STRUCTURAL STABILITY OF TERNARY ANTIMONIDES $T_{10}Sb_{5}T'$ (T=Ti, Zr, Hf, T'=V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh)

Catherine Colinet ¹ Jean-Claude Tedenac ²

Abstract

The crystal and thermodynamic properties of $T_{10}Sb_5T'$ ternary compounds where T=Ti, Zr, Hf and T' = V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh have been investigated by means of first principle calculations. The structure of these compounds is considered as a ternary variant of the W_5Si_3 type. Three possible ordered structures have been investigated in the present work. The two structures in which the Sb and T' atoms alternate along chains parallel to the c axis are the most stable ones. The calculated structural parameters are in good agreement with the experimental data. Both electronic and size effects allow to explain the stability of the ternary $T_{10}Sb_5T'$ compounds.

Keywords: DFT calculations; Enthalpies of formation; W_sSi, ternary variant; Nb_sSn_sSi-type.

ESTABILIDADE ESTRUTURAL DE COMPOSTOS TERNÁRIOS DE ANTIMONIO $T_{10}Sb_{5}T'$ (T=Ti, Zr, Hf, T'=V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh)

Resumo

As propriedades termodinâmicas e estruturas cristalinas dos compostos ternários do tipo $T_{10}Sb_5T'$ onde T=Ti, Zr, Hf and T' = V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh foram investigadas através de cálculos de primeiros princípios. A estrutura destes compostos é considerada uma variante ternária da estrutura do tipo W_5Si_3 . Tres possibilidades de ordenamento da estrutura foram investigadas neste trabalho. As duas estruturas nas quais os átomos de Sb e T' se alternam ao longo de cadeias paralelas ao eixo c da estrutura são as mais estáveis. Os parâmetros estruturais calculados estão em acordo com os valores experimentais. Tanto efeitos eletrônicos como de tamanho permitem explicar a estabilidade dos compostos ternários do tipo $T_{10}Sb_5T'$.

Palavras-chave: Cálculos DFT; Entalpias de formação; Variante ternária da estrutura W_sSi₃; Estrutura tipo Nb_sSn₂Si.

I INTRODUCTION

The existence of ternary compounds T_5X_2X' possessing the ternary D8_m structure (Nb₅Sn₂Si-type, tl32, l4/mcm, N°140) [1] has been often reported in systems where T in an early transition metal (Ti, Zr, Hf, Nb, Ta), X a p element (Sn, Sb) and X' another p element (Al, Ga, Si, Ge). The Wyckoff positions of the atoms in the compound D8_m-T₅X₂X' are the following: the T atoms occupy the 4b and 16k positions, the X atoms occupy the 8h while the X' atoms occupy the 4a positions. This ternary D8_m structure was found in several systems of the type T–X–X' [1-17]. Tanaka et al. [10], Kleinke [13], Voznyak et al. [16] emphasized the arrangement of the p elements in the $D8_m$ structure is controlled by size differences between X and X' elements.

In previous works [18-21], we performed *ab initio* calculations in order to determine the lattice parameters and the enthalpies of formation of D8_m-Ti₅Sn₂Si [18], D8_m-Ti₅Sn₂Ga [21], D8_m-Nb₅Sn₂Ga [19] and of several D8_m-Ti₅Sb₂X (X=AI, Ga, In, Si, Ge, Sn) [20] compounds. In these studies, we also concluded that the stability of these ternary D8_m compounds is due to the size difference between X and X' elements ($V_{sn} > V_{si}, V_{sn} > V_{Ga}$) or $V_{sb} > V(AI, Ga, In, Si, Ge, Sn)$. As a consequence, the distances X-X and T-T along the c axis are very short. Furthermore the stability of

²Institut de Chimie Moléculaire et des Matériaux, UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France.

^{2176-1523/© 2016,} Associação Brasileira de Metalurgia, Materiais e Mineração. Published by ABM. This is an open access paper, published under the Creative Commons CC BY-NC-ND license (Attribution-NonCommercial-NoDerivs) - https://creativecommons.org/licenses/by-nc-nd/4.0/.

¹Science et Ingénierie des Matériaux et Procédés, Université de Grenoble Alpes, 38402 Saint Martin d'Hères Cedex, France. E-mail: ccolinet@simap.grenoble-inp.fr

the compounds is favoured by an electronic factor due to a sufficient number of s and p electrons having the Fermi level near the bottom of the pseudo gap of the electronic density of states.

The aim of the present paper is to investigate the structural, thermodynamic, and electronic properties of another series of ternary compounds which possess a structure which is a variant-type of the W_sSi_3 structure. These compounds have the formula $T_{10}Sb_5T$ where T is an early transition metal (T= Ti, Zr, and Hf) and T' a transition metal of the 3d, 4d, or 5d rows, T' = V, Cr, Mn, Fe, Co, Ni, Cu, Rh, Pd, Pt. Several of them have been sinthetized and characterized [22-44]. Table I gathers the systems in which this structure has been found and characterized.

The more recent investigations concern the compounds Hf_sSb₂Ru₂ and Zr_sSb₂Ru₂ [39,44] which have be found to be superconductors. Table SI of the Supplement to this paper¹ gathers the lattice parameters of these compounds. Several ternary phase diagrams where the T₁₀Sb₅T' compound is stable have been investigated experimentally and isothermal sections at relatively low temperature have been drawn [22,28-30,32,34-36,39,41,43]. These systems are indicated by a star in Table 1. In most cases, a small deviation with respect to the stoichiometry $T_{10}Sb_5T'$ is observed. The structure of these T₁₀Sb₅T' compounds is considered to be a substitution variant of the W₅Si₃-type structure. While in the stoichiometric $D8_m$ - $T_{10}Sb_4T'_2$ compound, the 4a sites are occupied solely by the T' atoms, these sites are occupied by T' and Sb atoms in the $T_{10}Sb_5T'$ compound. Note that in both structures, the 8h sites are occupied by Sb atoms while the 4b and 16k sites are occupied by the T atoms. At high temperature, a random distribution of Sb and T' atoms on the 4a sites is expected. It could be possible to calculate the enthalpy of formation of a partially random structure by using either supercells or special quasi-random structures. However, these calculations are long and sometimes difficult. Therefore, we have considered in the present work three possible ordered structures which have been proposed by Kleinke et al. [42]. The lattice parameters, enthalpies of formation, electronic densities of states of several $T_{10}Sb_{z}T'$ compounds in these three structures have been computed. The results are also compared with those obtained for the $D8_m$ - $T_{10}Sb_4T'_2$ compound.

2 POSSIBLE ORDERED STRUCTURES OF T₁₀Sb₅T' COMPOUNDS

The unit cell of $D8_m$ -T₅Sb₂T' contains 32 atoms that are situated in a layered arrangement along c axis. The layers z=1/4 and z=3/4 are occupied by T' (4a) and T (4b) atoms while the layers z=0 and z=1/2 are occupied by the T (16k) and Sb (8h) atoms. Figure 1a and 1e show the $D8_m$ structure in the case of the Ti₅Sb₃ and Ti₅Sb₂Co

Table I. $T_{10}Sb_5T'$ ternary compounds with a structure which is a variant-type of the W₅Si₃ structure

System	Composition	Ref
	Ti ₅ Cu _{0.45} Sb _{2.55}	[22-25]
Ti-Cu-Sb*	Ti ₅ CuSb ₂	[26]
	Ti _s Cu _{I-x} Sb _{2+x}	[27]
	Ti ₅ Ni _{0.57} Sb _{2.43}	[25]
T: NI: CL *	Ti ₅ Ni _{0.45} Sb _{2.55}	[28]
Ti-Ni-Sb* — —	Ti ₅ Ni _{0.45} Sb _{2.55}	[27]
	Ti ₅ Ni _{0.45} Sb _{2.55}	[27]
	Ti ₅ Co _{0.46} Sb _{2.54}	[25]
Ti-Co-Sb*	Ti ₅ Co _{0.46} Sb _{2.54}	[29]
Ti-Co-Sb*	Ti ₅ Co _{0.5} Sb _{2.5}	[27]
	Ti ₅ Fe _{0.45} Sb _{2.55}	[30]
	Ti₅FeSb₂	[30]
11-Fe-3D*	Ti ₅ Fe ₀₅ Sb ₂₅	[27]
	Ti ₅ Fe _{0.58} Sb _{2.42}	[25]
Ti-Mn-Sb	Ti ₅ Mn _{0.45} Sb _{2.55}	[25]
	Ti ₅ CrSb ₂	[31]
Ti-Cr-Sb	Ti ₅ Cr ₀₅ Sb ₂₅	[25]
Ti-Pd-Sb	Ti _s Pd ₀ sSb ₂ s	[27]
	Ti _s RhSb ₂	[27]
Ti-Rh-Sb	Ti _s RhSb ₂	[27]
Ti-Ru-Sb	Ti _s Ru _o sb ₂₅	[27]
Zr-Cu-Sb*	Zr ₅ Cu _{0.45} Sb _{2.55}	[32]
	Zr ₅ Cu _{0.35} Sb _{2.55}	[33]
Zr-Ni-Sb*	Zr ₅ Ni _{0.5} Sb _{2.5}	[34]
Zr-Co-Sb*	Zr ₅ Co _{0.5} Sb _{2.5}	[35]
	Zr ₅ Ni _{0.4} Sb _{2.55}	[33]
	Zr ₅ Fe _{0.45} Sb _{2.55}	[33]
∠r-Fe-Sb*	Zr ₅ Fe _{0.44} Sb _{2.56}	[36]
	Zr ₅ Fe _{0.44} Sb _{2.56}	[37]
	Zr ₅ Mn _{1-x} Sb _{2+x}	[38]
Zr-Mn-Sb*	Zr ₅ Mn _{0.45} Sb _{2.55}	[32]
	Zr ₅ Mn _{0.5} Sb _{2.5}	[39]
Zr-Cr-Sb	Zr ₅ Cr _{0.49} Sb _{2.51}	[38]
Zr-Pd-Sb	Zr ₅ Pd _{0.5} Sb _{2.5}	[27]
Zr-Rh-Sb	Zr ₅ Rh _{0.55} Sb _{2.5}	[33]
Zr-Ru-Sb	Zr ₅ Ru _{0.6} Sb _{2.4}	[40]
Zr-Pt-Sb*	Zr ₅ PtSb ₂	[41]
	Hf ₁₀ CuSb ₅	[42]
Hf-Cu-Sb*	Hf ₅ Cu _{0.45} Sb _{2.55}	[43]
	Hf ₅ Cu _{0.5} Sb _{2.5}	[27]
	Hf ₁₀ NiSb ₅	[42]
Hf-Ni-Sb	Hf ₁₀ Ni ₁₁₈ Sb ₄₈₂	[38]
	Hf ₅ Ni ₀ ,Sb ₂	[27]
	Hf ₁₀ CoSb ₅	[42]
Ht-Co-Sb	Hf,Co ₀ ,Sb ₂ ,	[27]

*Systems for which isothermal sections have been drawn.

¹See DATA SUPPLEMENT to this paper in the same issue of this Journal.

System	Composition	Ref
Hf-Fe-Sb	Hf ₁₀ FeSb ₅	[42]
	Hf ₁₀ Fe _{1.54} Sb _{4.46}	[42]
	Hf _{4.929} Fe _{0.67} Sb _{2.33}	[27]
Hf-Mn-Sb —	Hf ₁₀ MnSb ₅	[42]
	Hf ₁₀ Mn _{1.16} Sb _{4.84}	[42]
Hf-Cr-Sb	Hf ₁₀ CrSb ₅	[42]
Hf-V-Sb	Hf ₁₀ VSb ₅	[42]
	Hf ₁₀ V _{0.8} Sb _{5.2}	[42]
	Hf ₁₀ V _{0.88} Sb _{5.12}	[42]
Hf-Pd-Sb	$Hf_5Pd_{0.5}Sb_{2.5}$	[27]
Hf-Rh-Sb	Hf _s Rh _{0.5} Sb _{.5}	[27]
	Hf _s Ru _{0.5} Sb _{2.5}	[27]
Hf-Ru-Sb	Hf ₅ Ru _{0.6} Sb _{2.4}	[44]

Table 1. Continued...

*Systems for which isothermal sections have been drawn.

compounds. The structure is build up of two different columns of atoms running parallel to the tetragonal c axis. In the case of D8m- Ti_5Sb_2Co , one column consists of Co (4a) centred square antiprisms (CoTi₈), which share square faces. The other column consists of Ti (4b) centred Sb tetrahedra (TiSb₄) which share edges. These two columns are interconnected by numerous Ti-Sb and Ti-Ti bonds. The Ti (4b) as well as the Co (4a) atoms form parallel linear chains with short interatomic distances c/2.

The possible ordered structures of $T_{10}Sb_5T$ compound which have been suggested by Kleinke et al. [42] are presented in Figures Ib-d: These structures, designated in the following by their space groups, are:

(i) N°97 in which the T' and Sb atoms alternate along the chains. The T' and Sb atoms also alternate in the planes z=0 and z=1/2.

Figure 1. Structures of (a) $D8_m$ - Sb_3Ti_5 , (b) $N^\circ 97$ - $Co_2Sb_{10}Ti_{20}$, (c) $N^\circ 125$ - $Co_2Sb_{10}Ti_{20}$, (d) $N^\circ 124$ - $Co_2Sb_{10}Ti_{20}$, (e) $D8_m$ - $Co_4Sb_8Ti_{20}$. Green and dark green circles: Ti atoms (4b and 16k Wyckoff positions of the $D8_m$ structure), orange circles: Sb atoms (8h Wyckoff positions of the $D8_m$), white circles: Co atoms (4a Wyckoff positions of the $D8_m$).

- (ii) N°125 in which again the T' and Sb atoms alternate along the chains but the T' atoms are in the z=0 plane while the Sb atoms in the z=1/2 plane
- (iii) N°124 in which there are alternate chains of T' atoms and Sb atoms parallel to the c axis.

The characteristics of these three ordered structures are given in Table 2 in the case of the $Ti_{10}Sb_5Co$ compound (the values of the lattice parameters and internal parameters have been calculated as indicated below) and in Table 3 in the case of $Hf_{10}Sb_5V$ compound.

Some remarks can already be done. In the three structures $Ti_{10}Sb_5Co$, the Ti atoms (4b in the $D8_m$ description) are in the middle of a tetrahedron formed by the Sb atoms (8h in the $D8_m$ description). On the other hand, the T' and Sb atoms (4a in the $D8_m$ des) form chains inside the antiprisms build with the Ti (16k in the $D8_m$ description) atoms. These chains are similar in the cases of the N°97 and N°125 structures. Figures S1 and S2 of the Supplement present the chains of Co and Sb atoms, and the chains of Ti atoms.

The aim of the present work is to perform first principles calculations of the enthalpies of formation of the N°97, N°125, and N°124 structures for several $Ti_{10}Sb_5T'$ compounds in order to obtain their relative stabilities.

3 COMPUTATIONAL METHOD

The density functional (DFT) calculations were performed with the Vienna ab initio simulation package (VASP) [45,46], making use of the projector augmented waves (PAW) technique [47,48]. The calculations include twelve valence electrons for Ti (3s² 3p⁶ 3d³ 4s¹). A plane-wave cut-off energy of 350 eV for all the elements has been taken. For the generalized gradient approximation (GGA) exchange correlation functional, the Perdew-Berke-Erzenhof parameterization (PBE) [49] was used. For the Brillouin-zone integration, the Methfessel-Paxton [50] technique with a modest smearing of the one-electron levels (0.2 eV) was used. Care was taken so that a sufficient number of k points for the Brillouin-zone integration was chosen for each structure. A Gamma centred k-point grid was used for the hexagonal structures while a Monkhorst-Pack [51] grid was chosen for the other structures. The tetrahedron method is used in the case of the stable compounds and for the electronic density of states computations. In this later case, the number of k points has been slightly increased. Spin-polarized calculations have been performed in the case of compounds with Cr, Mn, Fe, and Co.

The energy of formation per atom, $\ddot{A}_{F}E(T_{10/16}Sb_{5/16}T_{1/16})$, of the $T_{10/16}Sb_{5/16}T_{1/16}$ compound is obtained from Equation 1:

Table 2. Calculated lattice parameters and internal coordinates of the atoms of the $D8_m$, and ternary variants of the $D8_m$ structures in the Ti-Sb-Co system

Compound	Structure	Lattice parameters	Atomic positions		
	D8 _m ,		Sb (4a) 0, 0, 1/4		
Ti ₁₀ Sb ₆	W₅Si3-type,	a= 10.5061 Å	Sb (8h) 0.16392, 0.66392, 0		
	tl32, l4/mmc,	c= 5.4717 Å	Ti (4b) 0, 1/2, 1/4		
	N°140		Ti (16k) 0.07705, 0.22764, 0		
			Co (2a) 0, 0, 0		
	tl32,		Sb (2b) 0, 0, 1/2		
Ti₁₀Sb₅Co	1422,	a = 10.4907 A	Ti (4c) 0, 1/2, 0		
	N°97	C= 3.2147 A	Sb (8j) 0.16383, 0.66383, -0.25		
			Ti (16k) 0.07489, 0.21761, -0.24		
			Co (2a) 1/4, 1/4, 0		
	tP32, P4/nbm N°125		Sb (2b) 1/4, 1/4, 1/2		
T: Sh Ca		a= 10.4798 Å	Ti (2c) 3/4, 1/4, 0		
11 ₁₀ 30 ₅ CO		c= 5.2243 Å	Ti (2d) 3/4, 1/4, ½		
			Sb (8m) 0.4139, 0.5861, 0.2532		
			Ti (16n) 0.6754, 0.5322, 0.2382		
			Co (2a) 0, 0, 1/4		
	+D22		Sb (2c) 1/2, 1/2; 1/4		
T: Sh Ca	LF 32,	a= 10.4553 Å	Ti (4f) 0, 1/2, 1/4		
11 ₁₀ 30 ₅ CO	P4/mcc,	c= 5.3089 Å	Sb (8m) 0.16141, 0.66672, 0		
	IN 124		Ti (8m) 0.06969, 0.20045, 0.000		
			Ti (8m) 0.42301, 0.72846, 0.0000		
	D8 _m ,		Co (4a) 0, 0, 1/4		
T: Sh Ca	Nb ₅ Sn ₂ Si-type	a= 10.4767 Å	Sb (8h) 0.16413, 0.66413, 0		
11 ₁₀ 30 ₄ CO ₂	tl32,	c= 5.0569 Å	Ti (4b) 0, 1/2, 1/4		
	14/mmc, N°140		Ti (16k) 0.07052, 0.20120, 0		

Tecnol. Metal. Mater. Miner., São Paulo, v. 13, n. 1, p. 75-90, jan./mar. 2016

$$\Delta_{f} \mathbb{E} \left(\mathbb{T}_{10/16} \mathbb{Sb}_{5/16} \mathbb{T}_{1/16}' \right) = \mathbb{E}_{T}^{\min} \mathbb{10/16}^{Sb} \frac{5}{5/16} \mathbb{E}_{1/16}^{Sb} - \frac{5}{16} \mathbb{E}_{A^{7}-Sb}^{\min} - \frac{1}{16} \mathbb{E}_{T'}^{\min}$$
(1)

The E^{min} are the minimum total energy of the compound (expressed per atom) and of the elements (hexagonal close-packed A3-T, rhomboedric A7-Sb and pure T' elements in their standard state at 298K. At T=0K and p=0 Pa, the formation enthalpy, $\Delta_{\rm f} H (T_{10/16} {\rm Sb}_{5/16} T_{1/16})$, equals

the calculated formation energy, when the zero-vibration contribution is ignored, since it is much smaller than the formation energy.

4 RESULTS AND DISCUSSION

First of all, the ground state in the limiting binaries Ti-Sb, Zr-Sb, and Hf-Sb for the composition $x_T = 0.625$ has been calculated. The results are reported in Table 4.

Table 3. Calculated lattice parameters and internal coordinates of the atoms of the $D8_m$, and ternary variants of the $D8_m$ structures in the Hf-Sb-V system

Compound	Structure	Lattice parameters	Atomic positions		
	D8 _m ,		Sb (4a) 0, 0, 1/4		
	W₅Si₃-type,	a= 11.0440 Å	Sb (8h) 0.16621, 0.66621, 0		
пі ₁₀ 30 ₆	tl32,	c= 5.7202 Å	Hf (4b) 0, ½, 1/4		
	14/mmc, N°140		Hf (16k) 0.07477, 0.22452, 0		
			V (2a) 0, 0, 0		
	tl32,	2- 11 0649 Å	Sb (2b) 1/2, 1/2, 0		
Hf _{i0} Sb₅V	1422,	a = 11.0077 Å	Hf (4c) 0, 1/2, 0		
	N°97	C— 5.5637 A	Sb (8j) 0.66351, 0.16351, 0.25		
			Hf (16k) 0.07632, 0.21566, -0.23634		
			V (2a) ¼, ¼, 0		
	tP32, P4/nbm		Sb (2b) 1/4, 1/4, 1/2		
		a= 11.0495 Å	Hf (2c) 3/4, 1/4, 0		
	N°125	c= 5.6064 Å	Hf (2d) 3/4, 1/4, 1/2		
			Sb (8m) 0.33618, 0.83618, 0.25429		
			Hf (16n) 0.32543, 0.46597, 0.23645		
			V (2a) 0, 0, 1/4		
	+ ₽30		Sb (2c) 1/2, 1/2; 1/4		
	LF 52,	a= 11.0297 Å	Hf (4f) 0, 1/2, 1/4		
	P4/mcc,	c= 5.6518 Å	Sb (8m) 0.16337, 0.664654, 0		
	IN ⁻ 124		Hf (8m) 0.07190, 0.20557, 0.000		
			HF (8m) 0.42244, 0.72416, 0.0000		
	D8 _m ,		V (4a) 0, 0, 1/4		
	Nb ₅ Sn ₂ Si-type	a= 11.0506 Å	Sb (8h) 0.16283, 0.66283, 0		
ΠI ₁₀ 30 ₄ ν ₂	tl32,	c= 5.5640Å	Hf (4b) 0, ½, 1/4		
	14/mmc, N°140		Hf (16k) 0.07369, 0.20549, 0		

1000 100	Table 4. Enthalpies of f	ormation of T ₂ Sb ₂	(T=Ti, Zr,	Hf) in the D8_	(W _c Si _s -type)	, D8 _° (Mn _s Si,	-type), Yb _c Sb	o,-type and Y,B	i,-type structu
--	--------------------------	--	------------	----------------	--	--	----------------------------	-----------------	-----------------

System	Composition	Structure	$\Delta_{\!{ m f}}{ m H}$ (kJ/mol of atoms) Non magnetic
		D8 _m	-44.15
T: 5h	T: 5h	D8 ₈	-45.82
11-30	11,503	oP32, Yb ₅ Sb ₃ -type	-48.37
		oP32, Y ₅ Bi ₃ -type	-47.82
		D8 _m	-62.95
Zr-Sb	7r Sh	D8 ₈	-64.92
	ZI 503	oP32, Yb ₅ Sb ₃ -type	-65.70
		oP32, Y ₅ Bi ₃ -type	-65.90
		D8 _m	-41.19
	LIFCP	D8 ₈	-41.03
HI-30	HI ₅ 30 ₃	oP32, Yb ₅ Sb ₃ -type	-44.88
		oP32, Y ₅ Bi ₃ -type	-44.93

Tecnol. Metal. Mater. Miner., São Paulo, v. 13, n. 1, p. 75-90, jan./mar. 2016

The results are in agreement with the experimental information: the Yb₅Sb₃ structure type is the most stable in the case of the Ti₅Sb₃ compound while the Y₅Bi₃ structure type is the more stable in the cases of Hf₅Sb₃ compounds. In the case of the Zr₅Sb₃ compound, Garcia and Corbett [52] found that off stoichiometric D8₈-Zr₅Sb_{3+x} is stable and that the oP32-Y₅Bi₃-type is stable at high temperature. Our calculations indicate that the Zr₅Sb₃ in the Y₅Bi₃-type structure is 1kJ/mol of atoms more stable than the D8₈ structure. The calculated lattice parameters are in good agreement with the experimental data (Table 5).

For each investigated ternary system, the enthalpies of formation of the ordered compounds in structures $D8_m$, N°97, N°125, and N°124 are reported in Table 6. These results show that the N°97 and N°125 structures have very close enthalpies of formation, and that the enthalpy of formation of the N°124 structure is clearly less negative.

We have presented these results along sections in two cases: Ti_5Sb_3 - Ti_5Co_3 (Figure 2) and Hf_5Sb_3 - Hf_5V_3 (Figure 3).

The ground state in each limiting binary T-T' for $x_r = 0.625$ molar fraction has been calculated and is indicated on the figures. These figures make possible getting some indication about the relative stability of the various compounds along the section. The ternary D8_ structure T_sSb_bT' appears stabilized with respect to the mechanical mixture of $D8_m$ -T₅Sb₃ and $D8_m$ -T₅T'₃. This is due to the fact that the T' atoms possess a size which is lower than the one of the T atoms (T=Ti, Zr, Hf). Considering now, the section $D8_{m}$ -T_sSb₂ to $D8_{m}$ -T_sSb₂T', one observes again that the structures $N^{\circ}97$ and $N^{\circ}125$ have very similar enthalpies of formation. There is an important stabilization of the $N^{\circ}97-Ti_{10}Sb_{5}T'$ and $N^{\circ}125-Ti_{10}Sb_{5}T'$ structure with respect to the mechanical mixture of D8_-T_Sb, and D8_-T_Sb,T' (see Figure 2 and 3). This stabilization decreases from Cu to Mn in the 3d series (see Table 6). The enthalpy of formation of the N°I24 structure is less negative or of the same order of magnitude than the mean value of the formation enthalpies of D8_m-T₅Sb₃ and D8_m-T₅Sb₅T'.

For some of the investigated system, the experimental and calculated values of the lattice parameters are displayed on Figures 4 and 5. The lattice parameters calculated in the N°97 and N°125 ordered structures are in good agreement with the experimental values in the case of $Ti_{10}Sb_5Co$. In the case of $Hf_{10}Sb_5V$, the calculated values of the c parameter are in good agreement with the experimental ones, however the calculated values of the a parameter are clearly greater

Figure 2. Calculated values of the enthalpies of formation of the compounds along the section $Ti_sSb_{1}-Ti_sCo_{2}$.

Figure 3. Calculated values of the enthalpies of formation of the compounds along the section $Hf_{s}Sb_{3}-Hf_{s}V_{3}$.

i		1	5 3' 5 3'	5 3		
Compound	Structure		a [nm]	b [nm]	c [nm]	Reference
Ti _s Sb ₃	Yb ₅ Sb ₃ , oP32	Exp.	1.02182	0.83432	0.71748	[30]
	Pnma, N°62	Exp.	1.02173	0.83281	0.71459	[53]
		Calc.	1.01777	0.83721	0.71983	This work
$Zr_{5}Sb_{3}$	Y₅Bi₃, oP32	Exp.	0.7465	0.8801	1.0865	[52]
	Pnma, N°62	Exp.	0.7465	0.8801	1.0865	[54]
		Calc.	0.7528	0.889	1.0966	This work
Zr ₅ Sb ₃	Mn₅Si₃, hP16	Exp.	0.8422	0.8422	0.5696	[55,56]
	P63/mcm, N°193	Exp.	0.8488	0.8488	0.58	[57]
		Calc.	0.8515	0.8515	0.5797	This work
Hf ₅ Sb ₃	Y₅Bi₃, oP32	Exp.	0.74075	0.8718	1.0736	[58]
	Pnma, N°62	Calc.	0.7443	0.8841	1.0786	This work

Table 5. Experimental and calculated lattice parameters of Ti₂Sb₂, Zr₂Sb₂, and Hf₂Sb₂

Table 6. Calculated values of the formation entitalpies of $D0^{-1}$ is 30^{-1} , and 1^{-1} , 10^{-1} ,

			$\Delta_{f}H$	$\Delta_{\mathbf{f}}\mathbf{H}$
System	Composition	Structure	(kJ/mol of atoms)	(kJ/mol of atoms)
			Non magnetic	Spin pol.
Ti-Cu-Sb	Ti ₁₀ CuSb ₅	N° 97	-47.03	
		N°125	-47.00	
		N°124	-40.43	
	Ti ₁₀ Cu ₂ Sb ₄	D8 _m	-38.16	
Ti-Ni-Sb	Ti ₁₀ NiSb ₅	N°97	-49.71	
		N°125	-49.72	
		N°124	-42.98	
	Ti ₁₀ Ni ₂ Sb ₄	D8 _m	-44.60	
Ti-Co-Sb	Ti ₁₀ CoSb ₅	N°97	-48.09	-48.10
		N°125	-47.87	-47.91
		N°124	-42.59	-42.60
	Ti ₁₀ Co ₂ Sb ₄	D8 _m	_44.41	-44.46
Ti-Fe-Sb	Ti ₁₀ FeSb ₅	N°97	-46.30	-46.57
		N°125	-45.98	-46.38
		N°124	-41.77	-41.78
	Ti ₁₀ Fe ₂ Sb ₄	D8 _m	-42.20	-42.09
Ti-Mn-Sb	Ti ₁₀ MnSb ₅	N°97	-45.32	-45.22
		N°125	-44.90	-44.97
		N°124	-40.76	-40.89
	Ti ₁₀ Mn ₂ Sb ₄	D8 _m	-40.45	-40.58
Ti-Cr-Sb	Ti ₁₀ CrSb ₅	N°97	-42.93	
		N°125	-42.64	
		N°124	-38.46	
	Ti ₁₀ Cr ₂ Sb ₄	D8 _m	-35.71	
Ti-Pt-Sb	Ti ₁₀ PtSb ₅	N°97	-55.24	
		N°125	-55.19	
		N°124	-50.84	
	Ti ₁₀ Pt ₂ Sb ₄	D8 _m	-58.34	
Ti-Rh-Sb	Ti ₁₀ RhSb ₅	N°97	-52.08	
		N°125	-52.22	
		N°124	-46.19	
	Ti ₁₀ Rh ₂ Sb ₄	D8 _m	-50.5 l	
Zr-Cu-Sb	Zr ₁₀ CuSb ₅	N°97	-62.05	
		N°125	-62.00	
		N°124	-57.01	
	$Zr_{10}Cu_2Sb_4$	D8 _m	-50.9 l	
Zr-Ni-Sb	Zr ₁₀ NiSb ₅	N°97	-63.48	
		N°125	-63.65	
		N°124	-58.83	
	$Zr_{10}Ni_2Sb_4$	D8 _m	-55.32	
Zr-Co-Sb	Zr ₁₀ CoSb ₅	N° 97	-61.46	
	· –	N°125	-61.29	
		N°124	-57.70	
	Zr ₁₀ Co ₂ Sb ₄	D8 _m	-53.52	

Colinet; Tedenac

Table 6. Continued...

			$\Delta_{f}\mathbf{H}$	$\Delta_{f}H$
System	Composition	Structure	(kJ/mol of atoms)	(kJ/mol of atoms)
			Non magnetic	Spin pol.
Zr-Fe-Sb	Zr ₁₀ FeSb ₅	N°97	-59.59	-60.27
		N°125	-58.91	-59.99
		N°124	-56.21	-56.21
	$Zr_{10}Fe_2Sb_4$	D8 _m	-50.24	-49.47
Zr-Pt-Sb	Zr ₁₀ PtSb ₅	N°97	-70.84	
		N°125	-70.78	
		N°124	-67.60	
	$Zr_{10}Pt_{2}Sb_{4}$	D8 _m	-72.47	
Hf-Cu-Sb	Hf _{I0} CuSb₅	N°97	-44.83	
		N°125	-44.80	
		N°124	-39.67	
	Hf ₁₀ Cu ₂ Sb ₄	D8 _m	-37.53	
Hf-Ni-Sb	Hf₁₀NiSb₅	N°97	-47.17	
		N°125	-47.23	
		N°124	-42.39	
	Hf ₁₀ Ni ₂ Sb ₄	D8 _m	-43.57	
Hf-V-Sb	Hf ₁₀ VSb ₅	N°97	-41.40	
		N°125	-41.24	
		N°124	-37.91	
	$Hf_{10}V_2Sb_4$	D8 _m	-36.22	

Figure 4. Calculated and experimental [25,27,29] values of the lattice parameters of the D8_m compounds along the section Ti_sSb_3 - Ti_sCo_3 .

than the experimental ones. One explanation could be that the lattice parameters calculated in the GGA approximation are the more often greater than the experimental values. The values of the lattice parameters calculated for all compounds investigated in the present work are reported in the *Supplement* to this paper.

The distances between the atoms may be calculated and are reported in Table 7 in the case of the $D8_m$ -Ti₁₀Sb₄Co₂ compound and in Tables 8-10 in the cases of the three possible ordered structures of Ti₁₀Sb₅Co.

Figure 5. Calculated and experimental [41] values of the lattice parameters of the $D8_m$ compounds along the section Hf_5Sb_3 - Hf_5V_3 .

One may observe that the interatomic distances are the same in the N°97 and N°125 structures. Indeed as indicated in section 2, the only difference between the two structures is the positions of the Co and Sb atoms in the planes z=0 and z=1/2 (see Figures S1 and S2 of the *Supplement*). In another hand, the lattice parameters and the interatomic distances are different in the N°124 structure. In fact, the N°124 structure may be considered as the weighted sum of the D8_m-Ti₅Sb₃ and D8_m-Ti₅Sb₂Co structures. This is true for the lattice parameters and for the atomic distances. As a

Tecnol. Metal. Mater. Miner., São Paulo, v. 13, n. 1, p. 75-90, jan./mar. 2016

		,	5-2	-F					
	Co (4a)			Sb (8h)	Ti (4b)		Ti (16k)		
Co (4a)	2	2.530 Å					8	2.568 Å	
Sb (8h)					2	2.742 Å	8	2.808-3.058 Å	
Ti (4b)			4	2.742 Å	2	2.530 Å	8	3.458 Å	
Ti (16k)	2	2.568 Å	4	2.808-3.058 Å	2	3.458 Å	5	2.930-3.186 Å	

Table 7. Bond lengths in the ternary D8 -Ti_cSb₂Co compound

Table 8. Bond lengths in the ternary N°97-Ti10Sb5Co compound

		Co (2a)		Sb (2b)		Sb (8j)		Ti (4c)		Ti (16k)
Co (2a)			2	2.607 Å					8	2.719 Å
Sb (2b)	2	2.607 Å							8	2.769 Å
Sb (8j)							2	2.758 Å	8	2.797-3.081 Å
Ti (4c)					4	2.758 Å	2	2.607 Å	8	3.311-3.351 Å
Ti (16k)	Ι	2.719 Å	Ι	2.769 Å	4	2.797-3.081 Å	2	3.311-3.351 Å	7	2.955-3.414 Å

Table 9. Bond lengths in the ternary N°125-Ti10Sb5Co compound

		Co (2a)		Sb (2b)		Sb (8k)	Т	'i (2c), Ti (2d)		Ti (16l)
Co (2a)			2	2.612 Å					8	2.715 Å
Sb (2b)	2	2.612 Å							8	2.773 Å
Sb (8k)							Ι	2.766 Å	8	2.799-3.078 Å
							I	2.750 Å		
Ti (2c)					4	2.766 Å	2	2.612 Å	8	3.302 Å
Ti (2d)					4	2.750 Å	2	2.612 Å	8	3.351 Å
Ti (16l)	Ι	2.715 Å	Ι	2.773 Å	4	2.799-3.078 Å	I	3.302 Å	7	2.939-3.462 Å
							I	3.351 Å		

Table 10. Bond lengths in the ternary N°124-Ti10Sb5Co compound

		Co (2a)		Sb (2c)		Sb (8m)		Ti (4f)		Ti (16l)
Co (2a)	2	2.654 Å	2	2.654 Å					8	2.585 Å
Sb (2c)	2	2.654 Å							8	2.849 Å
Sb (8k)							2	2.765 Å	4	2.786-3.146 Å
Ti (4f)					4	2.765 Å	2	2.654 Å	8	3.236-3.479 Å
Ti (16l)	2	2.585 Å	2	2.849 Å	4	2.786-3.146 Å	2	3.236, 3.479 Å	6	3.028-3.473 Å

consequence, the enthalpy of formation of N°124-Ti₁₀Sb₅Co is in the middle of the line joining the enthalpies of formation of D8_m-Ti₅Sb₃ and D8_m-Ti₅Sb₂Co structures. This observation can be made in all other systems we have studied in the present work.

The Bader charges for the series $D8_m$ -Ti₅Sb₂T' and N°97- Ti₅Sb_{2.5}T'_{0.5} (T' = Co, Ni) have been computed. The transfer from the Ti atoms to the late transition metal is in these cases of about 1.5 e⁻, leading in these cases to a filled d band of Co and Ni.

At high temperature, one expects a random distribution of the Sb and T' atoms along the chains corresponding to the 4a sites of the $D8_m$ structure. As a consequence the formation enthalpy of the disordered phase will be less negative than the ones of N°97 and N°125 but the stability will be maintained by the mixing entropy of Sb and T'.

5 CONCLUSION

In the present work, we have investigated ternary compounds $T_{10}Sb_5T'$ where T=Ti, Zr, Hf, and T' a 3d, or 4d, or 5d transition metal of the end of the series. We have calculated the enthalpies of formation of $D8_m$ - T_5Sb_2T' and of ordered structures of composition $T_{10}Sb_5T'$. We have shown that the structures where the T' and Sb atoms alternate along the chains formed by the 4a sites of the W_5Si_3 structure are the most stable structures (structures N°97 and N°125). These structures are very similar, the only difference is the positions of T' and Sb atoms in the plans z=0 and z=1/2. On the contrary, the structure where chains formed by T' atoms and Sb atoms solely is the less stable one (structure N°124).

The stability of the $T_{10}Sb_5T'$ compound is due to several factors. First, even if the $D8_m$ -structure of Ti_5Sb_3 ,

 Zr_sSb_3 , and Hf_sSb_3 is not the ground state in the binaries Ti-Sb, Zr-Sb, and Hf-Sb, the energy difference between the D8_m and the ground state structure is not very important (less than 4.2 kJ/mol of atoms). Secondly, the D8_m-T_sSb₂T' compound in the Nb_sSn₂Si-type is stabilized with respect the two D8_m-T_sSb₃ and D8_m-T'_sSb₃ compounds, due to the size of the T' atom which is smaller than the one of the T atoms. In previous publications, this fact was shown in the case of T_sSb₂X compounds where X is a p element. Finally the composition T₁₀Sb₅T' is favoured by an electronic factor, which is a complete or partial filling of the d band of the T' transition metal. At high temperature, the Sb and T' atoms present a random distribution on the 4a chains of the W_5Si_3 -type structure. The formation enthalpy is therefore less negative than the one of the N°97 or N°125. The corresponding increase of the Gibbs energy is compensated by a configurational entropy due to the random mixing of Sb and T' atoms along the chains.

This study is a first step in the investigation of isothermal sections in the T-Sb-T' systems. Such studies require the knowledge of the formation enthalpies of all compounds present in the system.

REFERENCES

- I Horyn R, Lukaszewicz K. The crystal structure of Nb₅Sn₂Si. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Chimiques. 1970;18:59-64.
- 2 Bulanova M, Tretyachenko L, Meleshevich K, Saltykov V, Vereshchaka V, Galadzhyj O, et al. Influence of tin on the structure and properties of as-cast Ti-rich Ti-Si alloys. Journal of Alloys and Compounds. 2003;350:164-173.
- 3 Zhan Y, Yang W, Xu Y, Zhang X. Experimental phase diagram of the Ti–Si–Sn ternary system at 473 K. Journal of Alloys and Compounds. 2011;509:5269-5273.
- 4 Ukei K, Shishido T, Fukuda T. Structure of Nb_cSn₂Ga. Acta Crystallographica. 1989;C45:349-350.
- 5 Shishido T, Oku M, Okada S, Kudou K, Ye J, Sasaki T, et al. Chemical state and properties of the Nb₅Sn₂Ga grown by the self-component flux method using tin as a solvent. Journal of Alloys and Compounds. 1998;281(2):196-201.
- 6 Ye J, Horiuchi H, Shishido T, Toyota N, Ukei K, Sasaki T, et al. Growth and characterization of Va-Sn-Ga (Va = Ta, Nb, V) superconducting compounds. Journal of Crystal Growth. 1990;99:969-974.
- 7 Shishido T, Tanaka M, Horiuchi H, Toyota N, Fukuda T. Flux growth and characterization of a new ternary intermetallic compound Nb₅Sn₁₅Ge₁₅. Journal of Alloys and Compounds. 1992;178(1-2):L5-L9.
- 8 Shishido T, Ukei K, Toyota N. Range of solid solution of the superconducting ternary compound Nb₅Sn₂Ga. Journal of Alloys and Compounds. 1993;202:L1-L3.
- 9 Ye J, Horiuchi H, Shishido T, Ukei K, Fukuda T. Structure of Ta₂SnGa₂ Acta Crystallographica. 1990;C46:1193-1195.
- 10 Tanaka M, Horiuchi H, Shishido T, Fukuda T. Structure of $Nb_5(Gex, Sn_1 x)_2Ge x = 0.25$. Acta Crystallographica. 1993;C49:437-439.
- 11 Pietzka M, Gruber U, Schuster J.C, Investigation of phase equilibria in the ternary Ti-Al-Sn. Journal de Physique IV. 1993;3:473-476.
- 12 Pietzka MA, Schuster JC. New ternary aluminides T₅M₂Al having W₅Si₃-type structure. Journal of Alloys and Compounds. 1995;230:L10-L12.
- 13 Kleinke H. Ti_sSi_{1.3}Sb_{1.7} the first titanium silicide antimonide forming a crystal structure not found in either binary system. Canadian Journal of Chemistry. 2001;79:1338-1343.
- 14 Kozlov AY, Pavlyuk VV. New ternary antimonides Ti₅XSb₂ with W₅Si₃ structure type. Intermetallics. 2003;11:237-239.
- Kozlov AY, Pavlyuk VV. Investigation of the interaction between the components in the Ti-(Si,Ge)-Sb systems at 670 K. Journal of Alloys and Compounds. 2004;367:76-79.
- 16 Voznyak I, Tokaychuk Y, Gladyshevskii R. The system Hf-Ga-Sn at 600°C, and the crystal structure of Hf₅Ga_{1.24}. 0.52</sub>Sn_{1.76-2.48}. Chem. Met. Alloys. 2011;4:175-187.
- 17 Tokaychuk I, Tokaychuk YA, Gladyshevskii R. The ternary system Hf-Ga-Sb at 600°C. Chemistry of Metals and Alloys. 2013;6:75-80.
- 18 Colinet C, Tedenac J-C. Structural stability of the D8, -Ti, Sn, Si compound. Calphad. 2011;35:643-647.
- 19 Colinet C, Tedenac J-C. Ab-initio study of the stability of the D8_m-Nb_sSn₂Ga and D8_m-Ta_sSnGa₂ compounds. Journal of Alloys and Compounds. 2015;625:57-63.

- 20 Colinet C, Tedenac J-C. Structural stability of ternary D8_m-Ti₅Sb₂X (X=Al, Ga, In, Si, Ge, Sn) compounds. Calphad. 2015;49:8-18.
- 21 Fartushna I, Bulanova M, Colinet C, Tedenac J-C. Stability of the D8_m-Ti₅Sn₂Ga compound. Experimental determinations and first principle calculations. The Journal of Chemical Thermodynamics. 2014;78:269-277.
- 22 Koblyuk NO, Romaka LP, Bodak OI. Interaction between the components in the Ti-Cu-Sb system at 770 K. Journal of Alloys and Compounds. 2000;309(1-2):176-178.
- 23 Dremov RV, Koblyuk N, Mudryk Y, Romaka L, Sechovský V. Electrical resistivity and magnetism in some ternary Intermetallics. Journal of Alloys and Compounds. 2001;317-318:293-296.
- 24 Tkachuk A, Gorelenk Y, Stadnyk Y, Padlyak B, Jankowska-Frydel A, Bodak O, et al. Interaction between components in the Ti-Mn-Sb system at 870 K and the physical properties of Ti₅Mn _{0.45}Sb_{2.55}. Journal of Alloys and Compounds. 2001;319(1-2):74-79.
- 25 Tkachuk A, Romaka L, Hlil EK, Fruchart D, Melnychenko-Koblyuk AN, Stadnyk Y. Crystal, electric transport properties and electronic structures of the Ti₅Me_{1-x}Sb_{2+x} series of compounds (Me = Cr, Mn, Fe, Co, Ni, Cu). Journal of Alloys and Compounds. 2009;470(1-2):35-41.
- 26 Wei X, Liu H, He W, Zeng L. Thermal expansion behavior and crystal structure of CuSb₂Ti₅. Materials Letters. 2008;62:615-618.
- 27 Kaiser JW, Jeitschko W. Ternary transition metal antimonides T₅T _{1-x}Sb_{2+x} (T = Ti, Zr, Hf; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Cd) with Nb₅SiSn₂ (Ordered W₅Si₃, Filled V₄SiSb₂ type structure. Zeitschrift fur Anorganische und Allgemeine Chemie. 2002;628(2):337-343.
- 28 Romaka VV, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, et al. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems. Journal of Solid State Chemistry. 2013;197:103-112.
- 29 Stadnyk Y, Romaka L, Horyn A, Tkachuk A, Gorelenko Y, Rogl P. Isothermal sections of the Ti-Co-Sn and Ti-Co-Sb systems. Journal of Alloys and Compounds. 2005;387(1-2):251-255.
- 30 Melnyk G, Tremel W. The titanium-iron-antimony ternary system and the crystal and electronic structure of the interstitial compound Ti₅FeSb₂. Journal of Alloys and Compounds. 2003;349(1-2):164-171.
- 31 Tkachuk AV, Gorelenko YK, Padlyak BV, Jankowska Frydel A, Stadnyk YV. Magnetic properties of ternary W₅Si₃-type compounds. Journal of Magnetism and Magnetic Materials. 2002;242-245:901-903.
- 32 Melnychenko N, Romaka L, Stadnyk Y, Fruchart D, Bodak O. Zr-Cu-Sb ternary system and the crystal structure of new ternary compounds. Journal of Alloys and Compounds. 2003;352(1-2):89-91.
- 33 Kwon Y-U, Sevov SC, Corbett JD. Substituted W₅Si₃- and Zr₆Al₂Co-type phases formed in the zirconium-antimony and zirconium-tin systems with iron group metals. Chemistry of Materials. 1990;2(5):550-556.
- 34 Romaka L, Tkachuk A, Stadnyk Y, Romaka VA. Phase equilibria in Zr-Ni-Sb ternary system at 870 K. Journal of Alloys and Compounds. 2009;470(1-2):233-236.
- 35 Romaka VV, Romaka L, Rogl P, Stadnyk Y, Melnychenko N, Korzh R, et al. Peculiarities of thermoelectric half-Heusler phase formation in Zr-Co-Sb ternary system. Journal of Alloys and Compounds. 2014;585:448-454.
- 36 Melnyk G, Leithe-Jasper A, Rogl P, Skolozdra R. The antimony-iron-zirconium (Sb-Fe-Zr) system. Journal of Phase Equilibria. 1999;20(5):497-507.
- 37 Melnyk G, Bauer E, Rogl P, Skolozdra R, Seidl E. Thermoelectric properties of ternary transition metal antimonides. Journal of Alloys and Compounds. 2000;296:235-242.
- 38 Tkachuk AV, Mar A. Structure and physical properties of ternary W₅Si₃-type antimonides and bismuthides Zr₅M_{1-x}Pn _{2+x} (M=Cr, Mn; Pn=Sb, Bi). Journal of Solid State Chemistry. 2004;177(11):4136-4141.
- 39 Romaka L, Tkachuk A, Stadnyk Y, Romaka VV, Horyn A, Korzh R. Peculiarity of component interaction in Zr-Mn-{Sn, Sb} ternary systems. Journal of Alloys and Compounds. 2014;611:401-409.
- 40 Xie W, Luo H, Phelan BF, Cava RJ. Zr₅Sb_{3-x}Ru_x, a new superconductor in the W₅Si₃ structure type. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices. 2015;3(31):8235-8240.
- 41 Tkachuk AV, Mar A. The ternary Zr-Pt-Sb system. Journal of Alloys and Compounds. 2007;442(1-2):122-125.
- 42 Kleinke H, Ruckert C, Felser C. Mixed linear (M,Sb) chains in the new antimonides Hf₁₀M₍₎Sb₍₆₋₎ (M = V, Cr, Mn, Fe, Co, Ni, Cu): crystal and electronic structures, phase ranges, and electrical and magnetic properties. European Journal of Inorganic Chemistry. 2000;(2):315-322.

Colinet; Tedenac

- 43 Melnychenko-Koblyuk N, Romaka L, Akselrud L, Romaka VV, Stadnyk Y. Interaction between components in Hf-Cu-Sb ternary system at 770 K. Journal of Alloys and Compounds. 2008;461(1-2):147-149.
- 44 Xie W, Luo H, Seibel EM, Nielsen MB, Cava RJ. Superconductivity in Hf₅Sb_{3-x}Ru_x: are Ru and Sb a critical charge-transfer pair for superconductivity. Chemistry of Materials. 2015;27(13):4511-4514.
- 45 Kresse G, Furthmüller J. Efficiency of *ab-initio* total energy calculations for metals an semiconductors using a planewave basis set. Computational Materials Science. 1996;6:15-50.
- 46 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics. 1996;54:11169-11186.
- 47 Blochl PE. Projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics. 1994;50:17953-17979.
- 48 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics. 1998;59:1758-1775.
- 49 Perdew JP, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77:3865-3868.
- 50 Methfessel M, Paxton AT. High precision sampling for Brillouin-zone integration in metals. Physical Review B: Condensed Matter and Materials Physics. 1989;40:3616-3621.
- 51 Monkhorst HJ, Pack JD. Special points for Brillouin-zone Integrations. Physical Review B: Condensed Matter and Materials Physics. 1976;135:5188-5192.
- 52 Garcia E, Corbett JD. A synthetic and structural study of the zirconium- antimony system. Journal of Solid State Chemistry. 1988;73:440-451.
- 53 Kleinke H. Ti₅Sb_{2.2}Se_{0.8}: the first titanium antimonide- selenide. Journal of Alloys and Compounds. 2002;336:132-137.
- 54 Garcia E, Corbett JD. Chemistry of polar intermetallic compounds. Study of two Zr₅Sb₃ intermetallic phases, hosts for a diverse interstitial chemistry. Inorganic Chemistry. 1988;27:2353-2359.
- 55 Kozlov AY, Pavlyuk VV. Solid solutions based on the M₅X₃ binary compounds in the M-(Si,Ge)-Sb ternary systems (M= Ti, Zr, Y; X= Si, Ge, Sb). Chem. Ochr. Srodowiska. 2003;8:23-28.
- 56 Villars P, Calvert LD. Pearsons handbook of crystallographic data for intermetallic phases. Metals Park: ASM; 2011.
- 57 Morozkin AV. Phase equilibria in the Sm-Zr-Sb system at 1070 K. Journal of Alloys and Compounds. 2002;336:187-189.
- 58 Kleinke H, Felser C. New binary antimonide Hf₅Sb₃. Differences and similarities to the Zr antimonides. Journal of Alloys and Compounds. 1999;291:73-79.

Received: 18 Jan. 2016 Accepted: 21 Jan. 2016 **Supplement.** Structural stability of ternary antimonides $T_{10}Sb_5T'$ (T=Ti, Zr, Hf, T'=V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh) **Suplemento.** Estabilidade estrutural de compostos ternários de antimonio $T_{10}Sb_5T'$ (T=Ti, Zr, Hf, T'=V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh)

			$\Delta_{f}H$	$\Delta_{f}H$
System	Composition	Structure	(kJ/mol of atoms)	(kJ/mol of atoms)
			Non magnetic	Spin pol
	Ti₁₀CuSb₅	N°97	-47.027	
		N°125	-47.002	
		N°124	-40.432	
Ti-Cu-Sb	Ti ₁₀ Cu ₂ Sb ₄	D8 _m	-38.158	
	Ti ₁₀ Cu ₆	D8 _m	-0.708	
	GS CI Ib-Ti ₂ Cu	CIIb-Ti ₂ Cu	-11.686	
	+BII-TiCu	B11-TiCu	-13.389	
	Ti ₁₀ NiSb₅	N° 97	-49.710	
		N°125	-49.721	
		N°124	-42.982	
Ti-Ni-Sb	Ti ₁₀ Ni ₂ Sb ₄	D8 _m	-44.596	
	Ti ₁₀ Ni ₆	D8 _m	-26.323	
	GS E9 ₃ -Ti ₂ Ni	E9 ₃ -Ti ₂ Ni	-27.049	
	+B27-TiNi	B27-TiNi	-38.776	
	Ti₁₀CoSb₅	N° 97	-48.086	
		N°125	-47.869	
		N°124	-42.590	-48.095
Ti-Co-Sb	Ti ₁₀ Co ₂ Sb ₄	D8 _m	-44.409	-47.911
	Ti ₁₀ Co ₆	D8 _m	-25.180	-42.602
	GS E9 ₃ -Ti ₂ Co	E9 ₃ -Ti ₂ Co	-27.683	-44.463
	+B2-TiCo	B2-TiCo	-36.571	
	Ti ₁₀ FeSb ₅	N° 97	-46.298	
		N°125	-45.984	-46.574
		N°124	-41.768	-46.380
Ti-Fe-Sb	Ti ₁₀ Fe ₂ Sb ₄	D8 _m	-42.200	-41.782
	Ti ₁₀ Fe ₆	D8 _m	-13.240	-42.089
	GS E9 ₃ -Ti ₂ Fe	E9 ₃ -Ti ₂ Fe	-21.316	-13.659
	+B2-Ti-Fe	B2-Ti-Fe	-40.316	
	Ti ₁₀ MnSb ₅	N° 97	-45.3171	
		N°125	-44.9047	
		N°124	-40.7612	-45.2151
Ti-Mn-Sb	Ti ₁₀ Mn ₂ Sb ₄	D8 _m	-40.45 I	-44.9660
	Ti ₁₀ Mn ₆	D8 _m	-I.9705	-40.8914
	GS A3-Ti	A3-Ti	0	-40.576
	+B2-TiMn	B2-TiMn	-23.702	
	Ti ₁₀ PtSb ₅	N°97	-55.244	
		N°125	-55.190	
Ti Pr Sh		N°124	-50.840	
11-71-30	Ti ₁₀ Pt ₂ Sb ₄	D8 _m	-58.339	
	Ti ₁₀ Pt ₆	D8 _m	-71.509	
	GS D8 ₈ -Ti ₅ Pt ₃	D8 ₈ -Ti ₅ Pt ₃	-75.673	

 Table SIa. Calculated values of the formation enthalpies of Ti based compounds

Table SIa. Continued...

			$\Delta_{f}H$	$\Delta_{\mathbf{f}}\mathbf{H}$
System	Composition	Structure	(kJ/mol of atoms)	(kJ/mol of atoms)
			Non magnetic	Spin pol
	Ti₁₀RhSb₅	N°97	-52.002	
		N°125	-52.616	
		N°I24	-46.578	
Ti-Rh-Sb	Ti ₁₀ Rh₂Sb₄	D8 _m	-50.463	
	Ti ₁₀ Rh ₆	D8 _m	-52.500	
	GS CIIb-Ti₂Rh	C11b-Ti₂Rh	-63.131	
	+LI ₀ -TiRh	LI ₀ -TiRh	-75.847	

Table SIb. Calculated values of the formation enthalpies of Zr based compounds

			$\Delta_{\mathbf{f}}\mathbf{H}$	$\Delta_{f}H$
System	Composition	Structure	(kJ/mol of atoms)	(kJ/mol of atoms)
			Non magnetic	Spin pol
	Zr ₁₀ CuSb ₅	N°97	-62.047	
		N°125	-62.004	
		N°124	-57.012	
Zr-Cu-Sb	Zr ₁₀ Cu ₂ Sb ₄	D8 _m	-50.910	
	Zr ₁₀ Cu ₆	D8 _m	-4.074	
	GS CI Ib-Zr ₂ Cu	CIIb-Zr ₂ Cu	-13.2936	
	$+Zr_7Cu_{10}$	oS68-Zr ₇ Cu ₁₀	-15.7476	
	Zr ₁₀ NiSb ₅	N°97	-63.480	
		N°125	-63.654	
		N°124	-58.834	
Zr-Ni-Sb	$Zr_{10}Ni_2Sb_4$	D8 _m	-55.32I	
	Zr ₁₀ Ni ₆	D8 _m	-25.164	
	GS CI6-Zr ₂ Ni	CI6-Zr ₂ Ni	-31.299	
	+B33-ZrNi	B33-ZrNi	-44.028	
	Zr ₁₀ CoSb ₅	N°97	-61.456	
		N°125	-61.294	
		N°124	-57.698	
Zr-Co-Sb	Zr ₁₀ Co ₂ Sb ₄	D8 _m	-53.521	
	Zr ₁₀ Co ₆	D8 _m	-19.930	
	GS CI6-Zr ₂ Co	CI6-Zr ₂ Co	-24.540	
	+B27-ZrCo	B27-ZrCo	-31.389	
	Zr ₁₀ FeSb ₅	N°97	-59.587	-60.272
		N°125	-58.914	-59.992
		N°124	-56.213	-56.213
Zr-Fe-Sb	$Zr_{10}Fe_2Sb_4$	D8 _m	-50.235	-49.472
	Zr ₁₀ Fe ₆	D8 _m	-5.864	-5.981
	GS E9 ₃ -Zr ₂ Fe	E9 ₃ -Zr ₂ Fe	-11.649	
	+CI5-ZrFe2	C15-ZrFe2	-16.884	-26.980
	Zr ₁₀ PtSb ₅	N°97	-70.840	
		N°125	-70.776	
Zr-Pt-Sb		N°124	-67.599	
	$Zr_{10}Pt_2Sb_4$	D8 _m	-72.472	
	GS D8 _m -Zr ₁₀ Pt ₆	D8 _m -Zr ₁₀ Pt ₆	-79.127	

			$\Delta_{\mathbf{f}}\mathbf{H}$	$\Delta_{\mathbf{f}}\mathbf{H}$	
System	Composition	Structure	(kJ/mol of atoms)	(kJ/mol of atoms)	
			Non magnetic	Spin pol	
	Hf ₁₀ CuSb₅	N°97	-44.832		
		N°125	-44.798		
		N°124	-39.670		
Hf-Cu-Sb	Hf ₁₀ Cu₂Sb₄	D8 _m	-37.531		
	Hf ₁₀ Cu ₆	D8	-1.827		
	GS CI Ib-Hf,Cu	CI Ib-Hf,Cu	-15.639		
	$+Hf_{2}Cu_{10}$	oS68-Hf ₇ Cu ₁₀	-16.903		
	Hf ₁₀ NiSb₅	N°97	-47.169		
		N°125	-47.228		
		N°124	-42.387		
Hf-Ni-Sb	Hf ₁₀ Ni ₂ Sb ₄	D8 _m	-43.571		
	Hf ₁₀ Ni ₆	D8 _m	-27.959		
	GS C16-Hf,Ni	CI6-Hf,Ni	-32.916		
	+B33-HfNi	B33-HfNi	-50.007		
	Hf ₁₀ VSb ₅	N° 97	-41.402		
		N°125	-41.240		
		N°124	-37.910		
Hf-V-Sb	$Hf_{10}V_2Sb_4$	D8 _m	-36.217		
	Hf ₁₀ V ₆	D8	19.502		
	GS		0		
	C14-	CI4-HfV2	0.8829		

Table SIc.	Calculated	values of th	e formation	enthalpies o	of Hf based	compounds

Figure S1. Chains of Sb and Co atoms in the cases of N°97 and N°125 structures of $Ti_{10}Sb_{s}Co$. The Ti atoms form antiprisms which share faces.

Figure S2. Ti 4 centred Sb tetrahedra which share edges. This figure is the same in the N°97, N°125 and N°124 structures.