LIQUID IRON DEOXIDATION BY ALUMINUM: A BRIEF REVIEW OF EXPERIMENTAL DATA AND THERMODYNAMIC DESCRIPTION
DESOXIDAÇÃO DO FERRO LÍQUIDO POR ALUMÍNIO: UMA BREVE REVISÃO DOS DADOS EXPERIMENTAIS E DESCRIÇÕES TERMODINÂMICAS
Silva, André Luiz Vasconcellos da Costa e; Beneduce Neto, Flávio; Avillez, Roberto Ribeiro
http://dx.doi.org/10.4322/2176-1523.0935
Tecnol. Metal. Mater. Min., vol.12, n4, p.267-273, 2015
Abstract
The iron-oxygen-aluminum equilibrium has been a subject of interest for many years due to its importance in the steel industry. A great percentage of all flat rolled steel is aluminum killed “AK” (deoxidized) low-carbon steel, not only because of the low soluble oxygen contents that can be achieved but also because of the importance of the residual aluminum in forming aluminum nitride that is one of the main tools used to achieve crystallographic texture adequate for forming. The behavior both of oxygen and of aluminum in liquid iron are relatively well understood and quantified, as is the free energy of formation of alumina. Nonetheless, the Fe-Al-O behavior at liquid iron temperatures is not fully understood and considerable controversy still prevails. Thus, the objectives of this work are (a) to critically review the experimental work and assessments performed mainly on the Al-Fe-O–Al2O3 equilibrium, (b) to evaluate the current models used to describe this equilibrium and (c) to present a recommendation about the data, based on its evaluated reliability and consistency.
Keywords
Steel, Deoxidation, Thermodynamics, Al-Fe-O system, CALPHAD.
Resumo
O sistema ferro-oxigênio alumino tem sido investigado há muitos anos em função de sua importância para a indústria do aço. Uma grande fração de todo o aço plano produzido é de aço de baixo carbono acalmado ao alumínio, não apenas pelo baixo conteúdo de oxigênio residual em solução que pode ser obtido, mas, também, pela importância do alumínio residual na formação de AlN, importante no controle de estrutura e textura obtidas. Tanto o comportamento do oxigênio como o do alumínio no ferro líquido são relativamente bem compreendidos e quantificados, assim como a propriedades termodinâmicas da alumina. Entretanto, há discrepâncias significativas na quantificação do comportamento do sistema Fe-Al-O na tempertura do aço líquido, havendo, ainda, bastante controvérsia com respeito a equilíbrios importantes neste sistema. Assim, o objetivo deste trabalho é (a) realizar uma revisão crítica dos experimentos e avaliações termodinâmicas principalmente do equilíbrio Al-Fe-O–Al2O3 (b) avaliar os métodos atualmente usados para descrever este equilíbrio e (c) apresentar recomendações sobre os dados, com base em sua confiabilidade e consistência.
Palavras-chave
Aço, Desoxidação, Termodinâmica, Sistema Al-Fe-O, CALPHAD.
References
1 Llewellyn DT, Hudd RC. Steels: metallurgy and applications. Woburn: Butterworth-Heinemann; 1998.
2 Wang Q, Sun M, Qiu S, Tian Z, Zhu G, Wang L, et al. Study on mold slag with high Al2O3 content for high aluminum steel. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2014;45(2):540-546. http://dx.doi.org/10.1007/s11663-013-9929-2.
3 Rana R. Low-density steels. JOM. 2014;66(9):1730-1733. http://dx.doi.org/10.1007/s11837-014-1137-2.
4 Zuazo I, Hallstedt B, Lindahl B, Selleby M, Soler M, Etienne A, et al. Low-density steels: complex metallurgy for automotive applications. JOM. 2014;66(9):1747-1758. http://dx.doi.org/10.1007/s11837-014-1084-y.
5 Costa e Silva A, Ågren J, Clavaguera-Mora MT, Djurovic D, Gomez-Acebo T, Lee B-J, et al. Applications of computational thermodynamics: the extension from phase equilibrium to phase transformations and other properties. Calphad. 2007;31(1):53-74. http://dx.doi.org/10.1016/j.calphad.2006.02.006.
6 Hilty DC, Crafts W. The solubility of oxygen in liquid iron containing aluminum. Transactions of the Metallurgical Society of AIME. 1950;188(414):181-204.
7 Kang Y, Thunman M, Sichen D, Morohoshi T, Mizukami K, Morita K. Aluminum deoxidation equilibrium of molten iron-aluminum alloy with wide aluminum composition range at 1 873 K. ISIJ International. 2009;49(10):1483-1489. http://dx.doi.org/10.2355/isijinternational.49.1483.
8 Schenk H, Steinmetz E, Mehta K. Equilibrium and kinetics of the precipitation of alumina in the system iron-oxygenaluminium at 1600 °C. Archiv für das Eisenhüttenwesen. 1970;41(2):131-138.
9 Rohde LE, Choudhury A, Wahlster M. New investigations into the aluminum-oxygen equilibrium in iron melts. Archiv für das Eisenhüttenwesen. 1971;42(3):165-174.
10 Chipman J. Another look at the problem of steel deoxidation. Metal Progress. 1949;56(2):211-221.
11 Wagner C. Thermodynamics of alloys. Reading: Addison-Wesley; 1952.
12 Pelton AD. The polynomial representation of thermodynamic properties in dilute solutions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 1997;28B(5):869-876. http://dx.doi.org/10.1007/s11663-997-0015-5.
13 Lupis CHP. Chemical thermodynamics of materials. New York: North-Holland; 1983.
14 Gustafsson S, Melberg P-O. On the free energy interaction between some strong deoxidizers, especially calcium and oxygen in liquid iron. Scandinavian Journal of Metallurgy. 1980;9:111-116.
15 Fruehan RJ. Activities in liquid Fe-AI-O and Fe-Ti-O alloys. Metallurgical Transactions. 1970;1(12):3403-3410. http://dx.doi.org/10.1007/BF03037871.
16 Lupis CHP, Elliott JF. Generalized interaction coefficients. Acta Metallurgica. 1966;14(4):529-538. http://dx.doi.org/10.1016/0001-6160(66)90320-8.
17 Pelton AD, Bale CW. A modified interaction parameter formalism for non-dilute solutions. Metallurgical Transactions A, Physical Metallurgy and Materials Science. 1986;17(7):1211-1215. http://dx.doi.org/10.1007/BF02665320.
18 Lukas HL, Fries SG, Sundman B. Computational thermodynamics. Cambridge: Cambridge University Press; 2007.
19 Pelton AD. Solution models. In: Sano N, Lu W-K, Riboud PV, Maeda M, editors. Advanced physical chemistry for process metallurgy. San Diego: Academic Press; 1997. p. 87-116.
20 St. Pierre GRS. The solubility of oxides in molten alloys. Metallurgical Transactions B: Process Metallurgy.j 1977;8B(1):215-217. http://dx.doi.org/10.1007/BF02657649.
21 Kuo C-G. The calculation of Fe–Al–O interaction coefficient. Journal of Alloys and Compounds. 2010;494(1-2):7277. http://dx.doi.org/10.1016/j.jallcom.2010.01.035.
22 Hillert M, Selleby M, Sundman B. An assessment of the Ca-Fe-O system. Metallurgical Transactions A, Physical Metallurgy and Materials Science. 1990;21(10):2759-2776. http://dx.doi.org/10.1007/BF02646071.
23 Lupis CHP, Elliott JF. Generalized interaction coefficients Part II Free energy terms and the quasi-chemical theory. Acta Metallurgica. 1966;14(9):1019-1032. http://dx.doi.org/10.1016/0001-6160(66)90190-8.
24 Hino M, Ito K, editors. Thermodynamic data for steelmaking. Sendai: Tohoku University Press; 2010.
25 Fruehan R, editor. Making, shaping, and treating of steel, steelmaking and refining volume. 11th ed. Pittsburgh: AISE Steel Foundation; 1998.
26 Hillert M, Selleby M. Solubility of CaO and Al2O3 in liquid Fe. Scandinavian Journal of Metallurgy. 1990;19:23-25.
27 Costa e Silva A. Refractories in vacuum induction melting [master’s thesis]. Vancouver: University of British Columbia; 1979.
28 Gokcen NA, Chipman J. Aluminum-oxygen equilibrium in liquid iron. Transactions of the Metallurgical Society of AIME. 1953;194:173-178.
29 D’Entremont JC, Guernsey DL, Chipman J. Aluminum-oxygen interaction in liquid iron. Transactions of the Metallurgical Society of AIME. 1963;227:14-17.
30 Suito H, Inoue H, Inoue R. Aluminum oxygen equilibrium between CaO-Al2O3 melts and liquid iron. ISIJ International. 1991;31(12):1381-1388. http://dx.doi.org/10.2355/isijinternational.31.1381.
31 Sigworth GK, Elliott JF. The thermodynamics of liquid dilute iron alloys. Metal Science. 1974;8(1):298-310. http://dx.doi.org/10.1179/msc.1974.8.1.298.
32 Thermo-Calc Software AB - TCAB. SLAG3 Database. Stockholm; 2012.
33 Thermo-Calc Software AB - TCAB. TCFE7 Database. Stockholm; 2012.
34 Povoden E, Grundy AN, Gauckler LJ. Thermodynamic reassessment of the Cr-O System in the Framework of Solid Oxide Fuel Cell (SOFC) Research. Journal of Phase Equilibria and Diffusion. 2006;27(4):353-362.
35 Janke D, Fischer WA. Deoxidation equilibrium of titanium, aluminum and zirconium in iron melts at 1600C. Archiv für das Eisenhüttenwesen. 1976;47(4):195-198.
36 Cho S-W, Suito H. Assessment of calcium-oxygen equilibrium in liquid Iron. ISIJ International. 1994;34(3):265-269. http://dx.doi.org/10.2355/isijinternational.34.265.
37 Gaye H, Welfringer J. Modelling of the thermodynamic properties of complex metallurgical slags. In: Fine DRG, editor. Proceedings of the 2nd International Symposium on Metallurgical Slags and Fluxes. Lake Tahoe: TMS-AIME; 1984. p. 357-375.
38 Hillert M. A modified regular solution model for terminal solutions. Metallurgical and Materials Transactions A. 1986;17A(10):1878-1879. http://dx.doi.org/10.1007/BF02817285.
39 Paek M-K, Do K-H, Kang Y-B, Park J-H, Pak J-J. Inclusion thermodynamics for high-Al high-Mn advanced high strength steels. In: Proceedings of Clean Steel in Future – Prof Hae-Geon Lee Symposium; 2012 May 31-June 1; Pohang. Korea: Postech; 2012.
2 Wang Q, Sun M, Qiu S, Tian Z, Zhu G, Wang L, et al. Study on mold slag with high Al2O3 content for high aluminum steel. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2014;45(2):540-546. http://dx.doi.org/10.1007/s11663-013-9929-2.
3 Rana R. Low-density steels. JOM. 2014;66(9):1730-1733. http://dx.doi.org/10.1007/s11837-014-1137-2.
4 Zuazo I, Hallstedt B, Lindahl B, Selleby M, Soler M, Etienne A, et al. Low-density steels: complex metallurgy for automotive applications. JOM. 2014;66(9):1747-1758. http://dx.doi.org/10.1007/s11837-014-1084-y.
5 Costa e Silva A, Ågren J, Clavaguera-Mora MT, Djurovic D, Gomez-Acebo T, Lee B-J, et al. Applications of computational thermodynamics: the extension from phase equilibrium to phase transformations and other properties. Calphad. 2007;31(1):53-74. http://dx.doi.org/10.1016/j.calphad.2006.02.006.
6 Hilty DC, Crafts W. The solubility of oxygen in liquid iron containing aluminum. Transactions of the Metallurgical Society of AIME. 1950;188(414):181-204.
7 Kang Y, Thunman M, Sichen D, Morohoshi T, Mizukami K, Morita K. Aluminum deoxidation equilibrium of molten iron-aluminum alloy with wide aluminum composition range at 1 873 K. ISIJ International. 2009;49(10):1483-1489. http://dx.doi.org/10.2355/isijinternational.49.1483.
8 Schenk H, Steinmetz E, Mehta K. Equilibrium and kinetics of the precipitation of alumina in the system iron-oxygenaluminium at 1600 °C. Archiv für das Eisenhüttenwesen. 1970;41(2):131-138.
9 Rohde LE, Choudhury A, Wahlster M. New investigations into the aluminum-oxygen equilibrium in iron melts. Archiv für das Eisenhüttenwesen. 1971;42(3):165-174.
10 Chipman J. Another look at the problem of steel deoxidation. Metal Progress. 1949;56(2):211-221.
11 Wagner C. Thermodynamics of alloys. Reading: Addison-Wesley; 1952.
12 Pelton AD. The polynomial representation of thermodynamic properties in dilute solutions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 1997;28B(5):869-876. http://dx.doi.org/10.1007/s11663-997-0015-5.
13 Lupis CHP. Chemical thermodynamics of materials. New York: North-Holland; 1983.
14 Gustafsson S, Melberg P-O. On the free energy interaction between some strong deoxidizers, especially calcium and oxygen in liquid iron. Scandinavian Journal of Metallurgy. 1980;9:111-116.
15 Fruehan RJ. Activities in liquid Fe-AI-O and Fe-Ti-O alloys. Metallurgical Transactions. 1970;1(12):3403-3410. http://dx.doi.org/10.1007/BF03037871.
16 Lupis CHP, Elliott JF. Generalized interaction coefficients. Acta Metallurgica. 1966;14(4):529-538. http://dx.doi.org/10.1016/0001-6160(66)90320-8.
17 Pelton AD, Bale CW. A modified interaction parameter formalism for non-dilute solutions. Metallurgical Transactions A, Physical Metallurgy and Materials Science. 1986;17(7):1211-1215. http://dx.doi.org/10.1007/BF02665320.
18 Lukas HL, Fries SG, Sundman B. Computational thermodynamics. Cambridge: Cambridge University Press; 2007.
19 Pelton AD. Solution models. In: Sano N, Lu W-K, Riboud PV, Maeda M, editors. Advanced physical chemistry for process metallurgy. San Diego: Academic Press; 1997. p. 87-116.
20 St. Pierre GRS. The solubility of oxides in molten alloys. Metallurgical Transactions B: Process Metallurgy.j 1977;8B(1):215-217. http://dx.doi.org/10.1007/BF02657649.
21 Kuo C-G. The calculation of Fe–Al–O interaction coefficient. Journal of Alloys and Compounds. 2010;494(1-2):7277. http://dx.doi.org/10.1016/j.jallcom.2010.01.035.
22 Hillert M, Selleby M, Sundman B. An assessment of the Ca-Fe-O system. Metallurgical Transactions A, Physical Metallurgy and Materials Science. 1990;21(10):2759-2776. http://dx.doi.org/10.1007/BF02646071.
23 Lupis CHP, Elliott JF. Generalized interaction coefficients Part II Free energy terms and the quasi-chemical theory. Acta Metallurgica. 1966;14(9):1019-1032. http://dx.doi.org/10.1016/0001-6160(66)90190-8.
24 Hino M, Ito K, editors. Thermodynamic data for steelmaking. Sendai: Tohoku University Press; 2010.
25 Fruehan R, editor. Making, shaping, and treating of steel, steelmaking and refining volume. 11th ed. Pittsburgh: AISE Steel Foundation; 1998.
26 Hillert M, Selleby M. Solubility of CaO and Al2O3 in liquid Fe. Scandinavian Journal of Metallurgy. 1990;19:23-25.
27 Costa e Silva A. Refractories in vacuum induction melting [master’s thesis]. Vancouver: University of British Columbia; 1979.
28 Gokcen NA, Chipman J. Aluminum-oxygen equilibrium in liquid iron. Transactions of the Metallurgical Society of AIME. 1953;194:173-178.
29 D’Entremont JC, Guernsey DL, Chipman J. Aluminum-oxygen interaction in liquid iron. Transactions of the Metallurgical Society of AIME. 1963;227:14-17.
30 Suito H, Inoue H, Inoue R. Aluminum oxygen equilibrium between CaO-Al2O3 melts and liquid iron. ISIJ International. 1991;31(12):1381-1388. http://dx.doi.org/10.2355/isijinternational.31.1381.
31 Sigworth GK, Elliott JF. The thermodynamics of liquid dilute iron alloys. Metal Science. 1974;8(1):298-310. http://dx.doi.org/10.1179/msc.1974.8.1.298.
32 Thermo-Calc Software AB - TCAB. SLAG3 Database. Stockholm; 2012.
33 Thermo-Calc Software AB - TCAB. TCFE7 Database. Stockholm; 2012.
34 Povoden E, Grundy AN, Gauckler LJ. Thermodynamic reassessment of the Cr-O System in the Framework of Solid Oxide Fuel Cell (SOFC) Research. Journal of Phase Equilibria and Diffusion. 2006;27(4):353-362.
35 Janke D, Fischer WA. Deoxidation equilibrium of titanium, aluminum and zirconium in iron melts at 1600C. Archiv für das Eisenhüttenwesen. 1976;47(4):195-198.
36 Cho S-W, Suito H. Assessment of calcium-oxygen equilibrium in liquid Iron. ISIJ International. 1994;34(3):265-269. http://dx.doi.org/10.2355/isijinternational.34.265.
37 Gaye H, Welfringer J. Modelling of the thermodynamic properties of complex metallurgical slags. In: Fine DRG, editor. Proceedings of the 2nd International Symposium on Metallurgical Slags and Fluxes. Lake Tahoe: TMS-AIME; 1984. p. 357-375.
38 Hillert M. A modified regular solution model for terminal solutions. Metallurgical and Materials Transactions A. 1986;17A(10):1878-1879. http://dx.doi.org/10.1007/BF02817285.
39 Paek M-K, Do K-H, Kang Y-B, Park J-H, Pak J-J. Inclusion thermodynamics for high-Al high-Mn advanced high strength steels. In: Proceedings of Clean Steel in Future – Prof Hae-Geon Lee Symposium; 2012 May 31-June 1; Pohang. Korea: Postech; 2012.