Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.0767
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

TRINCAMENTO INDUZIDO POR HIDROGÊNIO EM AÇOS MICROLIGADOS

HYDROGEN INDUCED CRACKING IN MICROALLOYED STEELS

Hincapie-Ladino, Duberney; Falleiros, Neusa Alonso

Downloads: 0
Views: 982

Resumo

A necessidade de aços microligados, resistentes aos ambientes agressivos encontrados nas jazidas de petróleo e gás, como no pré-sal que contem quantidades consideráveis de ácido sulfídrico (H2S) e dióxido de carbono (CO2), requer que todos os setores envolvidos na cadeia produtiva da indústria petroleira conheçam os fatores que influenciam os processos de corrosão e falhas provocadas pelo hidrogênio em tubulações e peças fabricadas com aços microligados. Assim, através de uma coleção de publicações selecionadas e de resultados obtidos no Laboratório de Processos Eletroquímicos do Departamento de Engenharia Metalúrgica e de Materiais da Escola Politécnica da USP, foi elaborado este texto, o qual não pretende ser uma revisão bibliográfica completa, mas sim indicar os principais fatores científicos e tecnológicos que estão envolvidos nas falhas provocadas por hidrogênio na presença de H2S, particularmente, quando relacionadas ao fenômeno de trincamento induzido por hidrogênio (Hydrogen Induced Cracking-HIC). Por ser um fenômeno complexo que envolve várias etapas, o tema foi abordado em termos das variáveis ambientais e metalúrgicas. O HIC se inicia com o processo de corrosão do aço, assim é preciso considerar os fatores do meio corrosivo (presença de H2S). Além disso, é necessário conhecer as interações dos compostos presentes no meio corrosivo com a superfície do metal e como elas afetam a adsorção e a entrada de hidrogênio atômico no aço. As etapas seguintes são a difusão, aprisionamento do hidrogênio e trincamento do metal, as quais estão relacionadas diretamente com a composição química do aço e microestrutura, fatores que dependem fortemente da fabricação do aço. Pretende-se, com esta revisão, dar uma visão geral dos conhecimentos quanto às falhas provocadas por hidrogênio e quais são os próximos desafios no desenvolvimento de tubulações para transporte de derivados de petróleo e gás natural.

Palavras-chave

Aços microligados, Sulfeto de hidrogênio, Corrosão, Trincamento induzido por hidrogênio.

Abstract

The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2), requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2S), particularly, when related to the Hydrogen Induced Cracking (HIC) phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2S presence) effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

Keywords

Microalloyed steels, Hydrogen sulfide, Corrosion, Hydrogen induced cracking.

Referências

1 Hill RT. Offshore oil and gas development activities and challenges. In: The Minerals, Metals, and Materials Society. Proceedings of microalloyed steels for the oil and gas industry Symposium; 2007 Jan 23-26; Araxá, MG, Brazil. TMS; 2007. p. 15-26.

2 Pipeline Accident Reports [acesso em 8 jan. 2013]. Disponível em: http://www.ntsb.gov/investigations/reports_pipeline.html.

3 KJRH-TV. Chevron gas pipeline explodes in Milford, Texas; no injuries reported [acesso em 8 jan. 2013]. Disponível em: http://www.kjrh.com/news/national/chevron-gas-pipeline-explodes-in-milford-texas-no-injuries-reported.

4 Democratic Underground. San Bruno explosion: closeup view of the pipe that blew [acesso em 8 jan. 2013]. Disponível em: http://www.democraticunderground.com/discuss/duboard.php?az=view_all&address=389x9112174.

5 Kalwa C, Hillenbrand HG. Europipe’s experience and developments on pipe material for sour service applications. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012. Disponível em: https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=15513.

6 International Iron and Steel. High strength low alloy steels. Brussels: Iron and Steel Institute; 1987. p. 3.1-3.33. Chapter 3.

7 Stalheim DG, Barnes KR, Mccutcheon DB. Alloy designs for high strength oil and gas transmission linepipe steels. In: Proceedings of microalloyed steels for the oil and gas industry Symposium; 2007 Jan 23-26; Araxá, MG, Brazil. TMS; 2007. p. 73-108.

8 Hou H, Chen Q, Liu Q, Dong H. Grain refinement of a Nb–Ti microalloyed steel through heavy deformation controlled cooling. Journal of Materials Processing Technology. 2003;137(1-3):173-176. http://dx.doi.org/10.1016/S0924-0136(02)01088-9.

9 Zhao M, Yang K, Shan Y. Comparison on strength and toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Materials Letters. 2003;57(9-10):1496-1500. http://dx.doi.org/10.1016/S0167-577X(02)01013-3.

10 Deardo AJ. Metallurgical basis for thermomechanical processing of microalloyed steels. Ironmaking & Steelmaking. 2001;28(2):138-144. http://dx.doi.org/10.1179/030192301678055.

11 Cao J, Liu Q, Yong Q, Sun X. Precipitation of MC phase and precipitation strengthening in hot rolled Nb–Mo and Nb–Ti steels. Journal of Iron and Steel Research. 2007;14(3):51-55.

12 Total SA. Sour Gas: a history of expertise. 2007 [acesso em 12 jun. 2012]. Disponível em: http://www.total.com/MEDIAS/MEDIAS_INFOS/239/EN/sour-gas-2007.pdf.

13 Schröder J, Schwinn V, Liessem A. Recent developments in sour service line pipe steels. Proceedings of Microalloyed Steels for the oil and gAs Industry Symposium; 2007 Jan 23-26; Araxá, MG, Brazil. TMS; 2007. p. 123-134.

14 Kermani MB, Harr D. The impact of corrosion on oil and gas industry. Proceedings of Annual Technical Conference and Exhibition; 1995 March 11-14; Bahrain.

15 Sastri VS, Ghali E, Elboujdaini M. Corrosion prevention and protection practical solutions. Chichester: John Wiley & Sons; 2007. p. 423-459.

16 American Society for Testing Materials - ASTM. ASTM G129-00: standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking. West Conshohocken; 2013. Reapproved 2013.

17 National Association of Corrosion Engineers - NACE. NACE TM 0198-2004: slow strain rate test method for screening Corrosion-Resistant Alloys (CRAs) for stress corrosion cracking in sour oilfield service. NACE International; 2005.

18 Schweitzer PA. Fundamentals of corrosion, mechanisms, causes, and preventative methods. Boca Raton: CRC; 2010. p. 57-67.

19 Zakroczymski T. Entry of hydrogen into iron alloys from the liquid phase. ln: Oriani RA, Hirth JP, Śmiałowski M. Hydrogen degradation of ferrous alloys. New Jersey: William Andrew Publishing/Noyes; 1985. P. 215-249.

20 Palmer AC, King RA. Subsea pipeline engineering. Tulsa: Pennwell Corporation; 2004. p. 196-208.

21 National Association of Corrosion Engineers - NACE. NACE TM 0284-2011: evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. NACE International; 2011.

22 Gray JM. Low manganese sour service linepipe steel. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012. Disponível em : https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=15521.

23 Čipera M, Mikulová D. The influence of microstructure on hydrogen induced cracking in gas pipeline steels. Proceedings of 19th International Conference on Metallurgy and Materials; 2010 May 18-20; Czech Republic.

24 Shinohara Y, Hara T. Metallurgical design of UOE line pipe for sour service. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012.

25 Hincapie-Ladino D. Resistência à corrosão e ao trincamento induzido por hidrogênio de aços para tubos API 5LX65 [dissertação mestrado]. São Paulo: Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica da Universidade de São Paulo; 2012.

26 National Association of Corrosion Engineers - NACE. NACE MR 0175/ISO 15156-1: petroleum and natural gas industries materials for use in H2S-containing environments in oil and gas production. NACE International/ISO; 2001.

27 Rossum JR. Fundamentals of metallic corrosion in fresh water. The Roscoe Moss Co; 1980.

28 Ma HA, Cheng X, Chen S, Wang C, Zhang J, Yang H. An ac impedance study of the anodic dissolution of iron in sulfuric acid solutions containing hydrogen sulfide. Journal of Electroanalytical Chemistry. 1998;451(1-2):11-17. http://dx.doi.org/10.1016/S0022-0728(98)00081-3.

29 Armendro BN, González-Ramírez MF, Goldenstein H, Alonso-Falleiros N. Avaliação da corrosão em região soldada e no metal base de tubo api 5l x80 em meio contendo sulfeto de hidrogênio. Tecnologica em Metalurgia, Materiais e Mineração. 2012;9(3):220-227. http://dx.doi.org/10.4322/tmm.2012.031.

30 Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corrosion Science. 2000;42(10):1669-1683. http://dx.doi.org/10.1016/S0010-938X(00)00003-2.

31 Garcia LACJ, Joia CJBM, Cardoso EM, Mattos OR. Electrochemical methods in corrosion on petroleum industry: laboratory and field results. Electrochimica Acta. 2001;46(24-25):3879-3886. http://dx.doi.org/10.1016/S0013-4686(01)00675-2.

32 Vedage H, Ramanarayanan A, Mumford JD, Smith SN. Electrochemical growth of iron sulfide films in H2S-saturated chloride media. Corrosion. 1993;49(2):114-121. http://dx.doi.org/10.5006/1.3299205.

33 Zhou C, Zheng S, Chen C, Lu G. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel. Corrosion Science. 2013;67:184-192. http://dx.doi.org/10.1016/j.corsci.2012.10.016.

34 Biernat RJ, Robins RG. High-temperature potential/pH diagrams for the iron-water and iron-water-sulphur systems. Electrochimica Acta. 1972;17(7):1261-1283. http://dx.doi.org/10.1016/0013-4686(72)80013-6.

35 Macdonald DD, Syrett BC. A thermodynamic analysis of corrosion phenomena in high- salinity geothermal brines. Proceedings of Geothermal Materials Symposium.1978 May 23; Austin, TX, USA. Geothermal Systems Materials; 1978. p. 124-177.

36 National Association of Corrosion Engineers - NACE. NACE Standard MR0103-2007: materials resistant to sulfide stress cracking in corrosive petroleum refining environments. NACE International; 2007.

37 Cleary HJ, Greene ND. Corrosion properties of iron and steel. Corrosion Science. 1967;7(12):821-831. http://dx.doi.org/10.1016/S0010-938X(67)80115-X.

38 Her-Hsiung H, Wen-Ta T, Ju-Tung L. Electrochemical behavior of the simulated heat-affected zone of A516 carbon steel in H2S solution. Electrochimica Acta. 1996;41(7):1191-1199.

39 Lucio-Garcia MA, Gonzalez-Rodriguez JG, Casales M, Martinez L, Chacon-Nava JG, Neri-Flores MA, et al. Effect of heat treatment on H2S corrosion of a micro-alloyed C–Mn steel. Corrosion Science. 2009;51(10):2380-2386. http://dx.doi.org/10.1016/j.corsci.2009.06.022.

40 Park GT, Koh SU, Jung HG, Kim KY. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corrosion Science. 2008;50(7):1865-1871. http://dx.doi.org/10.1016/j.corsci.2008.03.007.

41 Hincapie-Ladino D, Goldenstein H, Perez de Oliveira M, Calderón-Hernandez JW, Montagna LS, Alonso-Falleiros N. Trincamento de tubos API 5L X65 e resistência à corrosão em meio contendo H2S. Anais do 67 congresso da Associação Brasileira de Metalurgia E Materiais; 2012 Jul 31-Ago 3; Rio de Janeiro, Brasil. São Paulo: ABM; 2012.

42 Brandão B, Hincapie-Ladino D, Calderón-Hernandez JW, Perez de Oliveira M, Alonso-Falleiros NA. Microstructures of API 5L X65 pipeline HIC resistance. Proceedings of Rio Pipeline Conference and Exposition; 2013 Sept 24-26; Rio de Janeiro, Brazil. Rio de Janeiro: IBP; 2013

43 Hincapie-Ladino D, Strobl H, Ramirez-González MF, Perez de Oliveira M, Goldenstein H, Alonso-Falleiros N. Inclusion behavior at the corrosion process of API 5L X65 pipes. Proceedings of Rio Pipeline Conference and Exposition; 2011 Sept 20-22; Rio de Janeiro, Brazil. Rio de Janeiro: IBP; 2011.

44 Inglez R, Alonso-Falleiro N. Desempenho quanto à resistência à corrosão de um aço alta resistência baixa liga em presença de sulfeto [monografia]. São Paulo: Departamento de Engenharia Metalúrgica e de Materiais; Escola Politécnica da Universidade de São Paulo; 2009.

45 Nieto J, Elías T, López G, Campos G, López F, De AK. Process and quality controls for production of linepipe slabs for sour service applications at arcelor mittal lazaro cardenas, Mexico. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012. Disponível em: https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=15514

46 Lee JY, Choo WY. Hydrogen trapping in AISI 4340 steel. Materials Science and Technology. 1983;17(9):426-432.

47 Lee JL, Lee JY. Hydrogen trapping by TiC particles in Iron. Acta Metallurgica. 1984;32(1):131-136. http://dx.doi.org/10.1016/0001-6160(84)90210-4.

48 Choo WY, Lee JY. Thermal Analysis of trapped Hydrogen in pure iron. Metallurgical and Materials Transactions. 1982;13(1):135-140. http://dx.doi.org/10.1007/BF02642424.

49 Ishikawa N, Endo S, Muraoka R, Kakihara S, Kondo J. Material design of high strength/heavy gauge linepipes for sour service. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012. Disponível em: https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=15517.

50 Elboujdaini M, Revie W. Metallurgical factors in stress corrosion cracking (SCC) and hydrogen-induced cracking (HIC). Journal of Solid State Electrochemistry. 2009;13(7):1091-1099. http://dx.doi.org/10.1007/s10008-009-0799-0.

51 Huang F, Li XG, Liu J, Qu YM, Jia J, Du CW. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel. Materials Science. 2011;46(3):715-722. http://dx.doi.org/10.1007/s10853-010-4799-3.

52 Xue HB, Cheng YF. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen induced cracking. Materials Science. 2011;53:1201-1208.

53 Domizzi G, Anteri G, Ovejero-Garcia J. Influence of sulfur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels. Corrosion Science. 2001;43(2):325-339. http://dx.doi.org/10.1016/S0010-938X(00)00084-6.

54 Jin TY, Liu YF, Cheng YF. Effect of non-metallic inclusions on hydrogen-induced cracking of API 5L X100 steel. International Journal of Hydrogen Energy. 2010;35(15):8014-8021. http://dx.doi.org/10.1016/j.ijhydene.2010.05.089.

55 Stallybrass C, Haase T, Konrad J, Bosch C, Kulgemeyer A. Alloy design for UOE linepipe material for standard non-standard HIC conditions. In: Companhia Brasileira de Metalurgia e Mineração - CBMM. Proceedings of the Microalloyed Steels for Sour Service International Seminar; 2012; São Paulo, Brasil. Araxá: CBMM; 2012. Disponivel em: https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=15515.

56 Liou HY, Wang SC, Hsieh I. Effect of microstructures on hydrogen embrittlement and absorbed energies in low carbon steel. China Steel Technical Report. 1996;10:22-31.

57 Wang SH, Luu WC, Ho KF, Wu JK. Hydrogen permeation in a submerged arc weldment of TMCP steel. Materials Chemistry and Physics. 2003;77(2):447-454. http://dx.doi.org/10.1016/S0254-0584(02)00100-1.

58 Tamehiro H, Takeda T, Matsuda S, Yamamoto K, Okumura N. Effect of Accelerated Cooling after Controlled Rolling on the Hydrogen Induced Cracking Resistance of Line Pipe Steel. Transactions of the Iron and Steel Institute of Japan. 1985;25(9):982-988. http://dx.doi.org/10.2355/isijinternational1966.25.982.

59 Hof WM, Gräf MK, Hillenbrand HG, Hoh B, Peters PA. New High Strength Large Diameter Pipe Steels. Journal of Materials Engineering. 1987;9(2):191-198. http://dx.doi.org/10.1007/BF02833710.

60 Sampath K. An understanding of HSLA-65 plate steels. Journal of Materials Engineering and Performance. 2006;15(1):32-40. http://dx.doi.org/10.1361/105994906X83439.
588696f87f8c9dd9008b47a5 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections