Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.0906
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EVOLUÇÃO MICROESTRUTURAL, TEXTURA E COMPORTAMENTO MECÂNICO DO AÇO TRIP/TWIP 17MN-0,06C APÓS LAMINAÇÃO A QUENTE, A FRIO E RECOZIMENTO

MICROSTRUCTURAL EVOLUTION, TEXTURE AND MECHANICAL BEHAVIOR OF TRIP STEEL 17MN TWIP-0.06C AFTER HOT ROLLING, ANNEALING AND COLD

Dafé, Sara Silva Ferreira de; Ferreira, Alessandra Cunha; Aguiar, Isabela Viegas; Santos, Dagoberto Brandão; Escobar, Diana María Pérez

Downloads: 1
Views: 1027

Resumo

Os aços com um alto teor de Mn (15-30%) e os elementos de liga, Si e Al, apresentam plasticidade excepcional devido à geração de maclas de deformação (efeito TWIP) ou múltiplas transformações martensíticas (efeito TRIP). Este trabalho avaliou a evolução microestrutural, a formação da textura e sua influência sobre o comportamento mecânico de um aço contendo 17%Mn-0,06%C laminado a frio com reduções de 45% e 90% e recozimentos a 700 °C durante tempos diferentes. A microestrutura foi analisada por microscopia óptica e eletrônica de varredura, EBSD e difração de raios X. A redução a frio favorece a formação da martensita α’. Nos aços recozidos estão presentes as fases martensita α’, ε e austenita. O limite de escoamento e de resistência à tração alcançaram 750 e 950 MPa, respectivamente, com o alongamento total de 45%, confirmando sua alta capacidade de encruamento. A reversão da martensita para austenita ocorre simultaneamente com a recristalização desta

Palavras-chave

Aço alto manganês, Aço TRIP, Aço TWIP, Martensita.

Abstract

Steels containing high contents of Mn, Si and Al have great plasticity when deformed due to TWIP or TRIP effects. This work evaluated the microstructural evolution, texture formation and its influence on the mechanical behavior of a steel containing 17%Mn and 0.06%C after cold rolling to 45% and 90% of reduction, and annealing at 700 °C for different times. The microstructures were analyzed by optical and scanning electron microscopy. Volume fraction of the phases γ, ε and α’ martensites were measured by X-ray diffraction and EBSD technique. It was found that cold reduction increases the α’ martensite volume fraction. The relative phase amounts showed that the sample annealed for the longest time, 1000 s, still presents ε and α’ martensite. The yield and tensile strength for annealing condition reach values close to 750 and 950 MPa, respectively, with total elongation of 45%, confirm the high work hardening rate of the analyzed steel.

Keywords

Manganese steel, TRIP steel, TWIP steel, Martensite.

Referências

1 Kim YG, Kim TW, Han JK, Chang RW. Development of new austenitic Fe-Mn-Al-C steels for automotive applications. Key Engineering Materials. 1993;84-85:461.

2 Grassel O, Frommeyer G, Derder C, Hofmann H. Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels. Journal of Phyisique IV. 1997;C5:383-388.

3 Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International. 2003;43(3):438-446.

4 Li DZ, Wei YH, Xu BS, Hou LF, Han PD. Development in fundamental research on TWIP steel used in automobile industry. Ironmaking & Steelmaking. 2011;38(7):540-545.

5 De Cooman BC, Kwon O, Chin KG. State-of-the-knowledge on TWIP steel. Materials Science and Technology. 2012;28:513-527.

6 Chen L, Zhao Y, Qin X. Some aspects of high manganese twinning-induced plasticity (TWIP) steel: a review. Acta Metallurgica Sinica. English Letters. 2013;26(1):1-15.

7 Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science. 2011;15:141-168.

8 Lu Y, Molodov DA, Gottstein G. Recrystallization kinetics and microstructure evolution during annealing of a coldrolled Fe-Mn-C alloy. Acta Materialia. 2011;59:3229-3243.

9 Vercammen S, Blanpain B, De Cooman BC, Wollants P. Cold rolling behavior of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning. Acta Materialia. 2004;52:2005-2012.

10 Jin JE, Lee YK. Strain hardening of a Fe-18Mn-0.6C-1.5Al TWIP steel. Materials Science and Engineering A. 2009;527:157-161.

11 Dumay A, Chateau JP, Allain S, Migot S, Bouaziz O. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Materials Science and Engineering A. 2008;483-484:184-187.

12 Bracke L, Kestens L, Penning J. Influence of α’-martensite in an austenitic Fe-Mn-C-N alloy. Scripta Materialia. 2007;57:385-388.

13 Lu F, Yang P, Meng L, Cui F, Ding H. Influences of thermal martensites and grain orientations on strain-induced martensites in high manganese TRIP/TWIP steels. Journal of Materials Science and Technology. 2011;27(3):257-265.

14 Zhang X, Sawaguchi T, Ogawa K, Yin F, Zhao X. Deformation microstructure of TRIP/TWIP steels at the early deformation stages. Prague, Czech Republic: ESOMAT; 2009. p. 1-8.

15 Dini G, Najafizadeh A, Monir-Vaghefi SM, Ueji R. Grain size effect on the martensite formation in a high-manganese TWIP steel by the rietveld method. Journal of Materials Science and Technology. 2010;26(2):181-186.

16 Santos DB, Salehb AA, Gazder AA, Carman A, Duarte DM, Ribeiro EAS, et al. Effect of annealing on the microstructure and mechanical properties of cold rolled Fe-24Mn-3Al-2Si-1Ni-0.06C twip steel. Materials Science and Engineering A. 2011;528:3545-3555.

17 Dafé SSF, Moreira DR, Matoso MS, Gonzalez BM, Santos DB. Martensite formation and recrystallization behavior in 17Mn0.06C2Si3Al1Ni TRIP/TWIP steel after hot and cold rolling. Materials Science Forum. 2013;753:185-190.

18 Rong-Gang X, Ren-Yu F, Qian L, Xi-Cheng W, Lin L. Tensile properties of TWIP steel at high strain rate. Journal of Iron and Steel Research. 2009;16(1):81-86.

19 Liu JB, Liu XH, Liu W, Zengb YW, Shu KY. Microstructure and hardness evolution during isothermal process at 700 °C for Fe-24Mn-0.7Si-1.0Al - TWIP steel. Materials Characterization. 2010;61:1356-1358.

20 Ding H, Song D, Tang Z, Yang P. Strain hardening behavior of a TRIP/TWIP steel with 18.8%Mn. Materials Science and Engineering A. 2011;528:868-873.

21 Lu F, Yang P, Meng L, Cui F, Ding H. Influences of thermal martensites and grain orientations on strain-induced martensites in high manganese TRIP/TWIP steels. Journal of Materials Science and Technology. 2011;27(3):257-265.

22 Dafé S, Sicupira F, Matos F, Cruz N, Moreira D, Santos D. Effect of cooling rate on (ε, α′) martensite formation in twinning/transformation-induced plasticity Fe-17Mn-0.06C Steel. Materials Research. 2013;16(6):1229-1236.

23 Dafé S, Valadão P, Moreira D, Santos D. Efeito da laminação a frio na formação de martensita, recristalização e comportamento mecânico do aço TRIP/TWIP 17Mn0.06C. 50°. In: Anais do Seminário de Laminação: Processos e Produtos Laminados e Revestidos; 2013 Nov 18-21; Ouro Preto, Brazil. São Paulo: ABM; 2013. p. 198-209.

24 Rios P, Siciliano F Jr, Sandin H, Plaut R, Padilha A. Nucleation and growth during recrystallization. Materials Research. 2005;8(3):225-238.

25 Liang X, McDermid JR, Bouaziz O, Wang X, Embury JD, Zurob HS. Microstructural evolution and strain hardening of Fe-24Mn and Fe-30Mn alloys during tensile deformation. Acta Materialia. 2009;57:3978-3988.

26 Dieter GE. Mechanical metallurgy. Japan: McGraw-Hill Kogakusha; 1988. Cap. 8, p. 275-324.
588697087f8c9dd9008b47ed tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections