Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.1085
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

PHASE DIAGRAMS AS TOOLS FOR ADVANCED MATERIALS DESIGN: APPLICATIONS TO NON-FERROUS ALLOYS

DIAGRAMAS DE FASES COMO FERRAMENTA NO PROJETO DE MATERIAIS AVANÇADOS- APLICACOES A LIGAS NÃO-FERROSAS

Ohnuma, Ikuo; Ishida, Kiyohito

Downloads: 2
Views: 1332

Abstract

It is recognized that phase diagrams and a thermodynamic database constructed by the CALPHAD (Calculation of Phase Diagrams) approach play an important role in alloy design and materials development. In this paper, recent progress on the thermodynamic database for micro-solders and Cu-base alloys, which is useful for the development of Pb-free solders and predictions of interfacial phenomena between solders and the Cu substrate in electronic packaging technology, is presented. In addition, typical examples of the application of phase diagrams are presented to facilitate the development of shape memory alloys, Co-Cr base magnetic recording media, ferromagnetic Heusler alloys and Co base superalloys.

Keywords

CALPHAD, Pb-free solders, Co-Cr magnetic recording media, Co based superalloys, Alloy design, Phase diagrams

Resumo

Já é bem aceito que diagramas de fases e um banco de dados termodinamicos construídos através do enfoque CALPHAD (Calculation of Phase Diagrams) tem um papel importante no projeto de ligas e no desenvolvimento de materiais. Neste artigo, são apresentados os recentes progressos nos bancos de dados para micro-soldas e ligas a base de cobre, que são úteis para o desenvolvimento de soldas isentas de Pb e para as previsões dos fenômenos interfaciais entre estas soldas e os substratos de Cu na tecnologia de montagem de componentes eletrônicos. Adicionalmente, exemplos típicos da aplicação de diagramas de fases no auxilio do desenvolvimento de ligas de memória de forma, ligas Co-Cr para mídia de gravação magnética de dados, ligas ferromagnéticas do tipo Heusler e superligas a base de Co são apresentados e discutidos.

Palavras-chave

CALPHAD, Ligas para soldagem isentas de Pb, Ligas para mídia de gravação magnética Co-Cr, Superligas a base de Co, Projeto de ligas, Diagramas de fases.

Referências

1 Kaufman L, Bernstein H. Computer calculation of phase diagrams. New York: Academic Press; 1970.

2 Nishizawa T. Progress of CALPHAD. Materials Transactions. 1992;33(8):713-722. http://dx.doi.org/10.2320/matertrans1989.33.713.

3 Saunders N, Miodownik AP. CALPHAD. Lausanne: Pergamon; 1998.

4 Sundman B, Jansson B, Andersson J-O. The Thermo-Calc databank system. Calphad. 1985;9(2):153-190. http://dx.doi.org/10.1016/0364-5916(85)90021-5.

5 Eriksson G, Hack K. Calculation of phase equilibria in multicomponent alloy systems using a specially adapted version of the program ‘SOLGASMIX’. Calphad. 1984;8(1):15-24. http://dx.doi.org/10.1016/0364-5916(84)90025-7.

6 Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R, et al. FactSage thermochemical software and databases. Calphad. 2002;26(2):189-228. http://dx.doi.org/10.1016/S0364-5916(02)00035-4.

7 Chen SL, Daniel S, Zhang F, Chang YA, Oates WA, Schmid-Fetzer R. On the calculation of multicomponent stable phase diagrams. Journal of Phase Equilibria. 2001;22(4):373-378. http://dx.doi.org/10.1361/105497101770332910.

8 Ohnuma I, Liu XJ, Ohtani H, Ishida K. Thermodynamic database for phase diagrams in micro-soldering alloys. Journal of Electronic Materials. 1999;28(11):1163. http://dx.doi.org/10.1007/s11664-999-0152-5.

9 Ohnuma I, Liu XJ, Ohtani H, Ishida K. In: Thermodynamic database for micro-soldering alloys. Grassie K, Tenckhoff E, Wegner G, Haubell J, Hanselka H, editors. Weinheim: Wiley-VCH; 2000. 69 p.

10 Ohnuma I, Liu XJ, Kainuma R, Ohtani H, Chen SL, Chang YA, Ishida K. Development of thermodynamic tool “ADAMIS/Pandat” and its application in design of micro-soldering materials. In: Proceedings of Annual Congress of ABM; 2003. p. 897-903.

11 Liu XJ, Ohnuma I, Wang CP, Jiang M, Kainuma R, Ishida K, et al. Thermodynamic database on microsolders and copper-based alloy systems. Journal of Electronic Materials. 2003;32(11):1265-1272. http://dx.doi.org/10.1007/s11664-003-0021-6.

12 Wang CP, Liu XJ, Jiang M, Ohnuma I, Kainuma R, Ishida K. Thermodynamic database of the phase diagrams in copper base alloy systems. Journal of Physics and Chemistry of Solids. 2005;66(2-4):256-260. http://dx.doi.org/10.1016/j.jpcs.2004.08.037.

13 Vianco PT, Frear DR. Issues in the replacement of lead-bearing solders. Journal of The Minerals, Metals & Materials Society. 1993;45(7):14-19. http://dx.doi.org/10.1007/BF03222374.

14 Liu XJ, Oikawa K, Ohnuma I, Kainuma R, Ishida K. The use of phase diagrams and thermodynamic databases for electronic materials. JOM. 2003;55(12):53-59. http://dx.doi.org/10.1007/s11837-003-0012-3.

15 Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K. Formation of immiscible alloy powders with egg-type microstructure. Science. 2002;297(5583):990-993. http://dx.doi.org/10.1126/science.1073050. PMid:12169728.

16 Zhao JZ, He J, Hu ZQ, Ratke L. Microstructure evolution in immiscible alloys during rapid directional solidification. Zeitschrift fur Metallkunde. 2004;95(5):362-368. http://dx.doi.org/10.3139/146.017967.

17 Wu M, Ludwig A, Pelzer M, Postl U. On the Impact of Macroscopic Phase Separation on Solidification Microstructures. Advanced Engineering Materials. 2005;7(9):846-851. http://dx.doi.org/10.1002/adem.200500098.

18 He J, Zhao JZ, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu–Fe alloys. Acta Materialia. 2006;54(7):1749-1757. http://dx.doi.org/10.1016/j.actamat.2005.12.023.

19 Kaptay G. Classification and general derivation of interfacial forces, acting on phases, situated in the bulk, or at the interface of other phases. Journal of Materials Science. 2005;40:2125.

20 Wang CP, Liu XJ, Kainuma R, Takaku Y, Ohnuma I, Ishida K. Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2004;35(4):1243-1253. http://dx.doi.org/10.1007/s11661-004-0298-y.

21 Takaku Y, Ohnuma I, Kainuma R, Yamada Y, Yagi Y, Nishibe Y, et al. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: thermodynamic calculation, microstructure, and interfacial reaction. Journal of Electronic Materials. 2006;35(11):1926-1932. http://dx.doi.org/10.1007/s11664-006-0295-6.

22 Yamada Y, Takaku Y, Yagi Y, Nakagawa I, Atsumi T, Shirai M, et al. Pb-free high temperature solders for power device packaging. Microelectronics and Reliability. 2006;46(9-11):1932-1937. http://dx.doi.org/10.1016/j.microrel.2006.07.083.

23 Yamada Y, Takaku Y, Yagi Y, Nakagawa I, Atsumi T, Shirai M, et al. Reliability of wire-bonding and solder joint for high temperature operation of power semiconductor device. Microelectronics and Reliability. 2007;47(12):2147-2151. http://dx.doi.org/10.1016/j.microrel.2007.07.102.

24 Ohnuma I, Saegusa T, Takaku Y, Wang CP, Liu XJ, Kainuma R, et al. Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap. Journal of Electronic Materials. 2009;38(1):2-9. http://dx.doi.org/10.1007/s11664-008-0537-x.

25 Miyamoto T, Nagasako M, Kainuma R. Phase equilibria in the Ni-Mn-In alloy system. Journal of Alloys and Compounds. 2013;549:57-63. http://dx.doi.org/10.1016/j.jallcom.2012.08.128.

26 Tadaki T. Cu-based shape memory alloys. In: Otsuka K, Wayman CM, editors. Shape memory materials. Cambridge: Cambridge University Press; 1998. p. 97.

27 Kainuma R, Takahashi S, Ishida K. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 1996;27(8):2187-2195. http://dx.doi.org/10.1007/BF02651873.

28 Koster W, Godecke T. Das Dreistoffsystem Kupfer-Mangan-Aluminium. Zeitschrift fur Metallkunde. 1966;57:889. Tecnol. Metal. Mater. Miner., São Paulo, v. 13, n. 1, p. 46-63, jan./mar. 2016

29 Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. Journal of Alloys and Compounds. 1998;266(1-2):191-200. http://dx.doi.org/10.1016/S0925-8388(97)00425-8.

30 Sutou Y, Omori T, Kainuma R, Ishida K, Yamauchi K. Development of Cu-Al-Mn-based shape memory alloys with enhanced ductility. Materia. 2003;42(11):813-821. http://dx.doi.org/10.2320/materia.42.813.

31 Sutou Y, Omori T, Yamauchi Y, Ono N, Kainuma R, Ishida K. Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Materialia. 2005;53(15):4121-4133. http://dx.doi.org/10.1016/j.actamat.2005.05.013.

32 Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, et al. Abnormal grain growth induced by cyclic heat treatment. Science. 2013;341(6153):1500-1502. http://dx.doi.org/10.1126/science.1238017. PMid:24072918.

33 Ishibashi M, Tabata N, Suetake T, Omori T, Sutou Y, Kainuma R, et al. A simple method to treat an ingrowing toenail with a shape-memory alloy device. The Journal of Dermatological Treatment. 2008;19(5):291-292. http://dx.doi.org/10.1080/09546630701759595. PMid:19160535.

34 Araki Y, Endo T, Omori T, Sutou Y, Koetaka Y, Kainuma R, et al. Potential of superelastic Cu-Al-Mn alloy bars for seismic applications. Earthquake Engineering & Structural Dynamics. 2011;40(1):107-115. http://dx.doi.org/10.1002/eqe.1029.

35 Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni 2 MnGa single crystals. Applied Physics Letters. 1996;69(13):1966. http://dx.doi.org/10.1063/1.117637.

36 James RD, Wuttig M. Magnetostriction of martensite. Philosophical Magazine A. 1998;77(5):1273-1299. http://dx.doi.org/10.1080/01418619808214252.

37 O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. Journal of Applied Physics. 1998;83(6):3263. http://dx.doi.org/10.1063/1.367094.

38 Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, et al. Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys. Applied Physics Letters. 2004;85(19):4358-4360. http://dx.doi.org/10.1063/1.1808879.

39 Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(7079):957-960. http://dx.doi.org/10.1038/nature04493. PMid:16495995.

40 Kainuma R, Oikawa K, Ito W, Sutou Y, Kanomata T, Ishida K. Metamagnetic shape memory effect in NiMn-based Heusler-type alloys. Journal of Materials Chemistry. 2008;18(16):1837. http://dx.doi.org/10.1039/b713947k.

41 Weller D, Doerner, MF. Annual Review of Materials Science. 2000;30:661.

42 Hono K, Babu SS, Maeda Y, Hasegawa N, Sakurai T. Atom probe compositional analysis of Co-Cr sputtered magnetic thin films. Applied Physics Letters. 1993;62(20):2504. http://dx.doi.org/10.1063/1.109336.

43 Ishida K, Nishizawa T. Role of Miscibility Gap in Magnetic Alloys: Alnico, Fe-Cr-Co and Co-Cr. In: Hayes FH, editor. Proceedings of International Conference. on User Aspects of Phase Diagrams; 1991. London: Institute of Metals; 1991. 185 p.

44 Hasebe M, Oikawa K, Nishizawa T. Computer Calculation of Phase Diagrams of Co-Cr and Co-Mn Systems. Journal of the Japan Institute of Metals and Materials. 1982;46:577.

45 Oikawa K, Qin GW, Ikeshoji T, Kainuma R, Ishida K. Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co–Cr system. Acta Materialia. 2002;50(9):2223-2232. http://dx.doi.org/10.1016/S1359-6454(01)00433-5.

46 Oikawa K, Qin GW, Kitakami O, Shimada Y, Fukamichi K, Ishida K. Prediction of effective elements for magnetically induced phase separation in Co–Cr-based magnetic recording media. Applied Physics Letters. 2001;79(5):644. http://dx.doi.org/10.1063/1.1389067.

47 Kikuchi N, Kitakami O, Okamoto S, Shimada Y, Sakuma A, Otani Y, et al. Influence of 5d transition elements on the magnetocrystalline anisotropy of hcp-Co. J. Phys. Cond. Mat. 1999;11(43):L485-L490. http://dx.doi.org/10.1088/0953-8984/11/43/103.

48 Graf T, Felser C, Parkin SSP. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry. 2011;39(1):1-50. http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001.

49 Ishikawa K, Kainuma R, Ohnuma I, Aoki K, Ishida K. Phase stability of the X 2 AlTi (X: Fe, Co, Ni and Cu) Heusler and B2-type intermetallic compounds. Acta Materialia. 2002;50(9):2233-2243. http://dx.doi.org/10.1016/S1359-6454(01)00434-7.

50 Kobayashi K, Umetsu RY, Fujita A, Oikawa K, Kainuma R, Fukamichi K, et al. Magnetic properties and phase stability of half-metal-type Co 2 Cr 1−x Fe x Ga alloys. Journal of Alloys and Compounds. 2005;399(1-2):60-63. http://dx.doi.org/10.1016/j.jallcom.2005.03.037.

51 Kobayashi K, Ishikawa K, Umetsu RY, Kainuma R, Aoki K, Ishida K. Phase stability of B2 and L2 1 ordered phases in Co 2 YGa (Y=Ti, V, Cr, Mn, Fe) alloys. Journal of Magnetism and Magnetic Materials. 2007;310(2):1794-1795. http://dx.doi.org/10.1016/j.jmmm.2006.10.704.

52 Umetsu RY, Okubo A, Nagasako M, Ohtsuka M, Kainuma R, Ishida K. Phase stability of L2 1 phase in Co -based heusler alloys. Spin. 2014;4(04):1440018. http://dx.doi.org/10.1142/S2010324714400189.

53 Ross EW, Sims CT. Superalloys II. New York: John Wiley & Sons; 1987. 97 p.

54 Beltran AM. Superalloys II. New York: John Wiley & Sons; 1987. 135 p.

55 Wood TE, Goldman E. Superalloys II. New York: John Wiley & Sons; 1987. 359 p.

56 Jia CC, Ishida K, Nishizawa T. Partition of alloying elements between γ (A1), γ′ (L1 2 ), and β (B2) phases in Ni-Al base systems. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 1994;25A(3):473-485. http://dx.doi.org/10.1007/BF02651589.

57 Miedema AR, Boer FR, Boom R, Mattens WCM, Niessen AK. Cohesion in metals: transition metal alloys. Amsterdam: North-Holland; 1989.

58 Ishida K. Intermetallic compounds in Co-base alloys-phase stability and application to superalloys. Proceedings of the Materials Research Society. 2009;1128:357.

59 Omori T, Sutou Y, Oikawa K, Kainuma R, Ishida K. Shape memory and magnetic properties of Co–Al ferromagnetic shape memory alloys. Materials Science and Engineering A. 2006;438-440:1045-1049. http://dx.doi.org/10.1016/j.msea.2005.12.068.

60 Shinagawa K, Chinen H, Omori T, Oikawa K, Ohnuma I, Ishida K, et al. Phase equilibria and thermodynamic calculation of the Co–Ta binary system. Intermetallics. 2014;49:87-97. http://dx.doi.org/10.1016/j.intermet.2014.01.015.

61 Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312(5770):90-91. http://dx.doi.org/10.1126/science.1121738. PMid:16601187.

62 Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, et al. Determination of phase equilibria in the Co-rich Co–Al–W ternary system with a diffusion-couple technique. Intermetallics. 2009;17(12):1085-1089. http://dx.doi.org/10.1016/j.intermet.2009.05.009.

63 Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, et al. Phase Equilibria and Microstructure on γ′ Phase in Co-Ni-Al-W System. Materials Transactions. 2008;49(6):1474-1479. http://dx.doi.org/10.2320/matertrans. MER2008073.

64 Omori T, Oikawa K, Sato J, Ohnuma I, Kattner UR, Kainuma R, et al. Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems. Intermetallics. 2013;32:274-283. http://dx.doi.org/10.1016/j.intermet.2012.07.033.

65 Suzuki A, Pollock TM. High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Materialia. 2008;56(6):1288-1297. http://dx.doi.org/10.1016/j.actamat.2007.11.014.

66 Pollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. New Co-based γ-γ′ high-temperature alloys. JOM. 2010;62:58. http://dx.doi.org/10.1007/s11837-010-0013-y.

67 Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Ductility enhancement by boron addition in Co–Al–W high- temperature alloys. Scripta Materialia. 2009;61(6):612-615. http://dx.doi.org/10.1016/j.scriptamat.2009.05.037.

68 Tanaka K, Ooshima M, Tsuno N, Sato A, Inui H. Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L1 2 two-phase microstructures. Philosophical Magazine. 2012;92(32):4011-4027. http://dx.doi.org/10.1080/14786435.2012.700416.

69 Sato YS, Miyake M, Kokawa H, Omori T, Ishida K, Imano S, et al. Friction stir welding and processing VI. TMS; 2011.
588697027f8c9dd9008b47d3 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections