Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.1242
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

INFLUÊNCIA DO TRATAMENTO TÉRMICO NA RESISTÊNCIA AO DESGASTE DE REVESTIMENTOS DE NÍQUEL QUÍMICO COM ALTO TEOR DE FÓSFORO

EFFECT OF HEAT TREATMENT ON THE WEAR BEHAVIOUR OF ELECTROLESS HIGH PHOSPHORUS NICKEL COATING

Goettems, Felipe Samuel; Ferreira, Jane Zoppas

Downloads: 0
Views: 972

Resumo

No presente trabalho foi avaliada a resistência ao desgaste de revestimentos de níquel químico com alto teor de fósforo (9-10% P) após passar por três diferentes condições de tratamento térmico, incluindo a condição de como depositado, ou seja, sem tratamento posterior. Os tratamentos foram realizados nas temperaturas de 320ºC, 400ºC e 500ºC em diferentes tempos, sendo estas condições escolhidas com base no resultado do ensaio de calorimetria exploratória diferencial (DSC). Feito isso as amostras foram então caracterizadas através do ensaio de desgaste do tipo “ball on plate”, para depois suas trilhas de desgaste serem avaliadas em microscópio. Ao final, chegou-se à conclusão de que o tratamento térmico afeta de forma positiva a resistência ao desgaste dos depósitos de Ni-P, tendo como 320ºC por 9 horas e 400ºC por 1 hora as condições que apresentaram o melhor resultado. Este fato se deve a transformação de sua estrutura amorfa para uma estrutura cristalina de níquel com precipitados de Ni3 P ocorrida entre 320ºC e 360ºC, verificada através da difração de raios-X (DRX).

Palavras-chave

Revestimento metálico, Resistência ao desgaste, Níquel químico, Tratamento térmico.

Abstract

In this present work was studied the influence of heat treatment on the wear resistance of electroless high phosphorus nickel coating (9-10% P wt.). Three different treatment conditions as well as untreated condition were evaluated at temperatures of 320ºC, 400ºC and 500ºC under different holding times. The selection of the heat treatment conditions was chosen considering the result obtained by a differential scanning calorimetry (DSC) analysis. The wear behaviour of the Ni-P samples was investigated through a non-lubricated ball on plate test and the results showed that the heat treatment affect positively the wear resistance of Ni-P coatings. Treatment conditions of 320ºC with 9 hours holding time and 400ºC with 1 hour holding time showed the best results due to a structural change from amorphous supersatured solid solution of phosphorus in nickel to a crystalline structure of nickel crystallites and nickel phosphides (Ni3 P) occurred between 320ºC and 360ºC verified after X-ray analysis.

Keywords

Metallic coatings, Wear resistance, Nickel electroless, Heat treatment.

Referências

1 Balamurugan GM, Duraiselvam M, Anandakrishnan V. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel. Materials & Design. 2012;35:640-646.

2 El-Amoush AS, Abu-Rob A, Edwan H, Atrash K, Igab M. Tribological properties of hard chromium coated 1010 mild steel under different sliding distances. Solid State Sciences. 2011;13(3):529-533.

3 Leahey MH. Replacement of hard chrome electroplating by tungsten carbide based high velocity oxygen fueled thermal spray. New York: Rensselaer Polytechnic Institute; 2009 [acesso em 4 set. 2016]. Disponível em: http://www.ewp.rpi.edu/~ernesto/SPR/Leahey-FinalReport.pdf

4 Apachitei I, Duszczyk J. Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance. Surface and Coatings Technology. 2000;132(1):89-98.

5 Hamada AS, Sahu P, Porter DA. Indentation property and corrosion resistance of electroless nickel–phosphorus coatings deposited on austenitic high-Mn TWIP steel. Applied Surface Science. 2015;356:1-8.

6 Jiaqiang G, Yating W, Lei L, Bin S, Wenbin H. Crystallization temperature of amorphous electroless nickel–phosphorus alloys. Materials Letters. 2005;59(13):1665-1669.

7 Lonyuk B, Apachitei I, Duszczyk J. Effect of high-phosphorus electroless nickel coating on fatigue life of Al–Cu–Mg–Fe–Ni alloy. Scripta Materialia. 2007;57(8):783-786.

8 Apachitei I, Tichelaar FD, Duszczyk J, Katgerman L. The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP–SiC coatings. Surface and Coatings Technology. 2002;149(2):263-278.

9 Ma C, Wu F, Ning Y, Xia F, Liu Y. Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings. Ceramics International. 2014;40(7):9279-9284.

10 Nava D, Davalos CE, Martinez-Hernandez A, Manriquez F, Meas Y, Ortega-Borges R, et al. Effects of heat treatment on the tribological and corrosion properties of electrodeposited Ni-P alloys. International Journal of Electrochemical Science. 2013;8:2670-2681.

11 Parente MMV, Mattos OR, Diaz SL, Lima P No, Miranda FF. Electrochemical characterization of Ni–P and Ni–Co–P amorphous alloy deposits obtained by electrodeposition. Journal of Applied Electrochemistry. 2001;31(6):677-683.

12 Szczygieł B, Turkiewicz A, Serafińczuk J. Surface morphology and structure of Ni–P, Ni–P–ZrO2, Ni–W–P, Ni–W–P–ZrO2 coatings deposited by electroless method. Surface and Coatings Technology. 2008;202(9):1904-1910.

13 Taheri R. Evaluation of electroless nickel-phosphorus (EN) coatings. Saskatoon: University of Saskatchewan Saskatoon; 2002 [acesso em 4 set. 2016]. Disponível em: http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/SSU/TC-SSU-02282003125442.pdf

14 Palaniappa M, Seshadri SK. Friction and wear behavior of electroless Ni–P and Ni–W–P alloy coatings. Wear. 2008;265(5–6):735-740.

15 Sahoo P, Das SK. Tribology of electroless nickel coatings – A review. Materials & Design. 2011;32(4):1760-1775.

16 Allen RM, VanderSande JB. The structure of electroless Ni P films as a function of composition. Scripta Metallurgica. 1982;16(10):1161-1164.

17 Mallory GO, Hajdu JB, editors. Electroless plating: fundamentals and applications. Orlando, Fla: AESF; 1990. 539 p.

18 Sribalaji M, Arunkumar P, Babu KS, Keshri AK. Crystallization mechanism and corrosion property of electroless nickel phosphorus coating during intermediate temperature oxidation. Applied Surface Science. 2015;355:112-120.

19 Franco M, Sha W, Aldic G, Malinov S, Çimeno lu H. Effect of reinforcement and heat treatment on elevated temperature sliding of electroless Ni–P/SiC composite coatings. Tribology International. 2016;97:265-271.

20 Bigdeli F, Allahkaram SR. An investigation on corrosion resistance of as-applied and heat treated Ni–P/nanoSiC coatings. Materials & Design. 2009;30(10):4450-4453.

21 Rabizadeh T, Allahkaram SR, Zarebidaki A. An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings. Materials & Design. 2010;31(7):3174-3179.

22 Lee CK. Corrosion and wear-corrosion resistance properties of electroless Ni–P coatings on GFRP composite in wind turbine blades. Surface and Coatings Technology. 2008;202(19):4868-4874.

23 Vitry V, Delaunois F, Dumortier C. Mechanical properties and scratch test resistance of nickel–boron coated aluminium alloy after heat treatments. Surface and Coatings Technology. 2008;202(14):3316-3324.

24 Palaniappa M, Seshadri SK. Friction and wear behavior of electroless Ni–P and Ni–W–P alloy coatings. Wear. 2008;265(5–6):735-740.

25 Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR, editors. Tribology for scientists and engineers. New York: Springer; 2013 [acesso em em 4 set. 2016]. Disponível em: http://link.springer.com/10.1007/978-1-4614-1945-7

26 Sadeghzadeh-Attar A. AyubiKia G, Ehteshamzadeh M. Improvement in tribological behavior of novel sol-enhanced electroless Ni-P-SiO2 nanocomposite coatings. Surface and Coatings Technology. 2016;307, Pt A, 837-848. https://doi.org/10.1016/j.surfcoat.2016.10.026.

5b7ef06d0e8825ad73896e51 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections