Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.1245
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

INFLUÊNCIA DE TRÊS PRÉ-TRATAMENTO DE SUPERFÍCIE COM POSTERIOR APLICAÇÃO DE TINTA POLIÉSTER NA RESISTÊNCIA A CORROSÃO DO AÇO AISI 1008

INFLUENCE OF THREE SURFACE PRE-TREATMENTS WITH SUBSEQUENT APPLICATION OF POLYESTER INK IN CORROSION RESISTANCE OF AISI 1008 STEEL

Marcolin, Patrícia; Pederiva, Leticia; Salvador, Débora Guerra; Beltrami, Lilian Vanessa Rossa; Oliveira, Claúdia Trindade; Kunst, Sandra Raquel

Downloads: 1
Views: 1019

Resumo

O objetivo deste estudo é analisar a influência de diferentes pré-tratamentos de superfície (fosfato, nanocerâmico e silano) na resistência à corrosão do aço AISI 1008, visando uma posterior aplicação da tinta poliéster. Os pré-tratamentos foram depositados sobre o substrato de maneira distinta. O fosfato teve sua aplicação em escala industrial por meio de pulverização em um sistema onde o desengraxe foi realizado ao mesmo estágio da fosfatização. No nanocerâmico utilizou-se o método por imersão com pH controlado em torno de 4,5 em uma solução de ácido hexafluorzircônio. Para o silano utilizou-se o método de dip-coating, para a aplicação dos precursores tetraetoxisilano (TEOS) e 3-(trimetóxisililpropil) metacrilato (MPTS) pré-hidrolizados. As amostras pré-tratadas foram caracterizadas quanto ao comportamento morfológico e eletroquímico. Após a aplicação de tinta poliéster, as amostras foram avaliadas quanto ao seu comportamento mecânico. Os resultados das análises para os pré-tratamentos superficiais e para os sistemas pré-tratamentos + tinta mostraram que o silano apresentou a melhor resistência à corrosão em relação ao sistema nanocerâmico e fosfatização.

Palavras-chave

Fosfatização, Silano, Nanocerâmicos, Tinta poliéster, Corrosão.

Abstract

The objective of this study was to analyze the influence of different surface pre-treatments (phosphate, nano-ceramic and silane) on the corrosion resistance of AISI 1008 steel, with a view to the subsequent application of polyester ink. The pre-treatments were deposited on the substrate in distinct ways. Phosphate was applied on an industrial scale by spraying in a system where degreasing was carried out at the same stage of phosphating. In the nano-ceramic pre-treatment the immersion method was used, with controlled pH of about 4.5 in a solution of hexafluorzirconium acid. For the silane pre-treatment the dip-coating method was used for the application of pre-hydrolysed tetraethoxysilane (TEOS) and 3-(trimethylsilylpropyl) methacrylate (MPTS) precursors. The pre-treated samples were characterized for morphological and electrochemical behavior. After the application of polyester ink, the samples were evaluated for their mechanical behavior. The results for the surface pre-treatments and for the pre-treatment + ink systems showed that silane presented the best corrosion resistance amongst the tested pre-treatments.

Keywords

Phosphatization, Silane, Nano-ceramics, Polyester ink, Corrosion.

Referências

1 Curioni M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta. 2014;120:284-292.

2 Zheng L, Landon J, Matin NS, Liu K. Corrosion mitigation via a pH stabilization method in monoethanolamine-based solutions for post-combustion CO2 capture. Corrosion Science. 2016;106:1-10.

3 Nijhuis CA, Reus WF, Whitesides GM. Molecular rectification in Metal−SAM−Metal Oxide−Metal junctions. Journal of the American Chemical Society. 2009;131:7814-7827.

4 Qian M, Soutar AM, Tan XH, Zeng XT, Wijesinghe SL. Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel. Thin Solid Films. 2009;517:5237-5242.

5 Kunst SR, Ludwig GA, Cardoso HRP, Santana JA, Sarmento VHV, Malfatti CF. Hybrid films with (trimethoxysilylpropyl) methacrylate (TMSM), poly (methyl methacrylate) PMMA and tetraethoxysilane (TEOS) applied on tinplate. Materials Research. 2014;17:75-81.

6 Zubielewicz M, Kamińska-Tarnawska E, Kozłowska A. Protective properties of organic phosphate-pigmented coatings on phosphated steel substrates. Progress in Organic Coatings. 2005;53:276-285.

7 Mohseni M, Bastani S, Jannesari A. Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Progress in Organic Coatings. 2014;77:1191-1199.

8 Phanasgaonkar A, Raja V. Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel. Surface and Coatings Technology. 2009;203:2260-2271.

9 Kunst SR, Cardoso HRP, Beltrami LVR., Oliveira CT, Menezes TL, Ferreira JZ, Malfatti CF. New sol-gel formulations to increase the barrier effect of a protective coating against the corrosion and wear of galvanized steel. Materials Research. 2015;18:138-150.

10 Deflorian F, Rossi S, Fedrizzi L. Silane pre-treatments on copper and aluminium. Electrochimica Acta. 2006;51:6097-6103.

11 Zhai Y, Zhao Z, Frankel GS, Zimmerman J, Bryden T, Fristad W. Surface pretreatment based on dilute hexafluorozirconic acid. In: Department of Defense. Proceedings of the Corrosion Conference; 2007; United States: Research Gate; 2007. p. 1-16.

12 Basiruddin SK, Saha A, Pradhan N, Jana NR. Advances in coating chemistry in deriving soluble functional nanoparticle. The Journal of Physical Chemistry C. 2010;114:11009-11017.

13 Kunst SR, Cardoso HRP, Oliveira CT, Santana JA, Sarmento VHV, Muller IL, Malfatti CF. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: influence of tetraethoxysilane addition. Applied Surface Science. 2014;298:1-11.

14 Álvarez D, Collazo A, Nóvoa XR, Pérez C. The anticorrosive properties of sol-gel films doped with hydrotalcite nanoparticles applied on tinplate. Electrochimica Acta. 2014;131:137-147.

15 Popic JP, Jegdic BV, Bajat JB, Veljovic D, Stevanovic SI, Miskovic-Stankovic VB. The effect of deposition temperature on the surface coverage and morphology of iron-phosphate coatings on low carbono steel. Applied Surface Science. 2011;257:10855-10862.

16 Sheng M, Wang Y, Zhong Q, Wu H, Zhou Q, Lin H. The effects of nano-SiO2 additive on the zinc phosphating of carbon steel. Surface and Coatings Technology. 2011;205:3455-3460.

17 Ramanatham E, Balasubramanian S. Synthesis and characterization of hexafluorozirconic acid powder and its application in nanoceramic coating. Surface and Coatings Technology. 2016;304:228-236.

18 Mohammadlooa HE, Sarabi AA, Alvani AAS, Sameiea H, Salimia R. Nano-ceramic hexafluorozirconic acid based conversion thin film: surface characterization and electrochemical study. Surface and Coatings Technology. 2012;206:4132-4139.

19 Kunst SR, Ludwig GA, Santana JA, Sarmento VHV, Bertoli PP, Menezes TL, Ferreira JZ, Malfatti CF. Elaboração e caracterização de filmes híbridos siloxano-PMMA preparados pelo processo sol-gel sobre folhas de flandres: influência do pH do sol. Ciência e Tecnologia dos Materiais. 2014;26:33-38.

20 Ding X, Xue L, Wang X, Ding K, Cui S, Sun Y, et al. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd–Fe–B permanent magnets. Journal of Magnetism and Magnetic Materials. 2016;416:247-255.

21 Shirtcliffe NJ, Mchale G, Atherton S, Newton MI. An introduction to superhydrophobicity. Advances in Colloid and Interface Science. 2010;161:124-138.

22 van Ooij WJ. Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, Puomi P. Corrosion protection properties of organofunctional silanes. Science and Technology. 2005;6:639-664.

23 Amini R, Vakili H, Ramezanzadeh B. Studying the effects of poly (vinyl) alcohol on the morphology and anticorrosion performance of phosphate coating applied on steel surface. Journal of the Taiwan Institute of Chemical Engineers. 2016;58:542-551.

24 Stefanoni M, Angst U, Elsener B. Local electrochemistry of reinforcement steel -Distribution of open circuit and pitting potentials on steels with different surface condition. Corrosion Science. 2015;98:610-618.

25 Shi JJ, Sun W. Effects of phosphate on the chloride-induced corrosion behavior of reinforcing steel in mortars. Cement and Concrete Composites. 2014;45:166-175.

26 Andreatta F, Turco A, Graeve ID, Terryn H, Wit JH, Fedrizzi L. SKPFM and SEM study of the deposition mechanism of ZrTi based pre treatment on AA6061 aluminum alloy. Surface and Coatings Technology. 2007;201:7668-7685.

27 Lunder O, Simensen C, Yu Y, Nisancioglu K. Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium. Surface and Coatings Technology. 2004;184:278-290.

28 Donofrio J. Zinc phosphating. Metal Finishing. 2000;98:60-73.

29 Panossian Z, Santos CAL. Camadas fosfatizadas destinadas à conformação mecânica. Corrosão e Proteção. 2012;43(9):22-25.

30 Flis J, Kanoza M. Electrochemical and surface analytical study of vinyl-triethoxy silane films on iron after exposure to air. Electrochimica Acta. 2006;51:2338-2345.

31 Morks MF, Corrigan PA, Cole IS. Mn–Mg based zinc phosphate and vanadate for corrosion inhibition of steel pipelines transport of CO2 rich fluids. International Journal of Greenhouse Gas Control. 2012;7:218-224.

32 Veleva L, Alpuche-Aviles MA, Graves-Brook MK, Wipf DO. Comparative cyclic voltrametry and surface analysis of passive films grown on stainless steel 316 in concrete pore model solutions. Journal of Electroanalytical Chemistry. 2002;537:85-93.

33 Nedochetko MTS, Martins CR, Heyder S, Riella HG, Koslowski LAD. Estudo e avaliação de aditivos nas propriedades de tintas em pó do tipo poliéster em substratos metálicos e vítreos. Anais do XX Congresso Brasileiro de Engenharia Química; 2014; Florianópolis, Brasil. São Paulo: Blucher; 2014. p. 14148-14155.

5b7ef46c0e88259479896e52 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections