Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.20181525
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

APATITE BIOFLOTATION USING SPENT YEAST (SACCHAROMYCES CEREVISIAE) CELLS AS COLLECTOR

BIOFLOTAÇÃO DE APATITA UTILIZANDO LEVEDURA CERVEJEIRA (SACCHAROMYCES CEREVISIAE) SAPONIFICADA COMO COLETOR

André Carlos Silva, Diego Valentim Crescente Cara, Elenice Maria Schons Silva, Geraldo Sadoyama Leal, Alex Malüe Machado, Lucas Martins da Silva

Downloads: 2
Views: 1009

Resumo

The main source of phosphate in Brazil are igneous rocks, which need to be concentrated through froth flotation to separate phosphate ore from the other minerals. Searching for new sources of reactants to be used in mineral processing, spent yeast cells (SYC), from a local brewery was tested. Saccharomyces cerevisiae was choose because its relative easy industrial grow, has no biological risk and can be found worldwide. Microflotation experiments were conducted in a modified Hallimond’s tube with high purity apatite mineral samples at pH 10 in order to investigate the influence of the collector dosage in the mineral recovery. The results showed that despite SYC has had lower recovery than collectors industrially adopted, it has a potential future use in mineral flotation as a cheap, biodegradable, eco-friendly, and sustainable reagent with no acquisition cost since the brewery complex is located less than 30 km from Catalão and Ouvidor mine sites in Brazil.

Palavras-chave

Bioflotation; Spent yeast cells; Flotation reagent.

Abstract

A principal fonte de fosfato no Brasil é a rocha ígnea, que precisa ser concentrada através da flotação no intuito de separar o minério de fosfato dos outros minerais. À procura de novas fontes de reagentes a serem utilizadas no processamento de minerais, as células de levedura de cerveja gastas (SYC) provenientes de uma cervejaria local foram testadas. A espécie Saccharomyces cerevisiae foi escolhida devido ao seu fácil crescimento industrial, não possuir risco biológico e poder ser encontrada em todo o mundo. Experimentos de microflotação foram conduzidos em um tubo de Hallimond modificado em pH 10 com amostras de apatita de alta pureza a fim de investigar a influência da concentração do coletor na recuperação do mineral. Os resultados mostraram que apesar das SYC terem uma recuperação menor do que coletores adotados industrialmente, estas possuem potencial para uso futuro na flotação mineral, se apresentando como um reagente barato, biodegradável, ecológico e sustentável, sem custo de aquisição, uma vez que o complexo da cervejaria fica a menos de 30 km das minas nas cidades de Catalão e Ouvidor, Brasil.

Keywords

Bioflotação; Levedura de cerveja gasta; Reagente de flotação.

Referências

1 Murphy S, Burch D, Clapp J. Cereal secrets: the world’s largest grain traders and global agriculture. Oxford: Oxfam Research Reports; 2012.

2 Rudorff BFT, Aguiar DA, Silva WF, Sugawara LM, Adami M, Moreira MA. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remote Sensing. 2010;2(4):1057-1076. http://dx.doi.org/10.3390/rs2041057.

3 Prochnow LI. Optimizing nutrient use in low fertility soils of the tropics. Better Crops with Plant Food. 2008;92(3):19-21.

4 Juo ASR, Franzluebbers K. Tropical soils: properties and management for sustainable agriculture. 1st ed. New York: Oxford University Press; 2003.

5 Current world fertilizer trends and outlook to 2016. Rome: Food and Agriculture Organization of the United Nations; 2012.

6 Taiz L, Zeiger E. Plant physiology. 5th ed. Sunderland: Sinauer Associates; 2010.

7 Sis H, Chander S. Reagents used in the flotation of phosphate ores: a critical review. Minerals Engineering. 2003;16(7):577-585. http://dx.doi.org/10.1016/S0892-6875(03)00131-6.

8 Silva AC, Moraes ILA, Silva EMS, Silva CM Fo. Jatropha curcas L. oil selectivity in froth flotation. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 2016;10(10):1-7.

9 Guiamarães RC, Araújo AC, Peres AEC. Reagents in igneous phosphate ores flotation. Minerals Engineering. 2005;18(2):199-204. http://dx.doi.org/10.1016/j.mineng.2004.08.022.

10 Behera SK, Mulaba-Bafubiandi AF. Microbes assisted mineral flotation a future prospective for mineral processing industries: a review. Mineral Processing and Extractive Metallurgy. 2016;38(2):1-10.

11 Yang X, Jin G, Gong Z, Shen H, Song Y, Bai F, et al. Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi. Bioresource Technology. 2014;158:383-387. http://dx.doi.org/10.1016/j.biortech.2014.02.121.

12 Northcote DH, Horne RW. The chemical composition and structure of the yeast cell wall. The Biochemical Journal. 1952;51(2):232-236, 236.2. http://dx.doi.org/10.1042/bj0510232.

13 Brandão PRG, Caires LG, Queiroz DSB. Vegetable lipid oil-based collectors in the flotation of apatite ores. Minerals Engineering. 1994;7(7):917-925. http://dx.doi.org/10.1016/0892-6875(94)90133-3.

14 Dwyer R, Bruckard WJ, Rea S, Holmes RJ. Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Mineral Processing and Extractive Metallurgy. 2012;121(2):65-71. http://dx.doi.org/10.1179/1743285512Y.0000000005.

15 Rao KH, Subramanian S. Bioflotation and bioflocculation of relevance to minerals bioprocessing. In: Donati ER, Sand W. Microbial processing of metal sulfides. Dordrecht: Springer; 2007. p. 267-286.

16 Pacheco CAT, Silva AC, Silva EMS, Rocha TWP. Microflotação de apatita com óleos da polpa da castanha de Macaúba. In: Neves AF, Paula MH, Anjos PHR, Silva AG. Estudos Interdisciplinares em Ciências Biológicas, Saúde, Engenharias e Gestão. São Paulo: Blucher; 2016. p. 249-260. http://dx.doi.org/10.5151/9788580391619-16.

17 Guimarães P Jr, Silva AC, Silva EMS. Modelling the hydraulic entrainment phenomenon in microflotation. In: Flogen. Proceedings of the 2nd International Symposium on Sustainable Mineral Processing; 2015 Oct 4-8; Antalya, Turkey. Vancouver: Flogen; 2015. p. 186-192.

18 Rocha TWP. Estudo sobre a utilização do óleo da castanha de Macaúba como coletor na microflotação de apatite [thesis]. Catalão: Universidade Federal de Goiás; 2014.

19 Silva TC. Utilização do óleo de pequi como coletor na microflotação de apatita [thesis]. Catalão: Universidade Federal de Goiás; 2014.

20 Oliveira MS. Minério fosfático sílico-carbonatado: estudo fundamental [thesis]. Belo Horizonte: Universidade Federal de Minas Gerais; 2007.

21 Padukone SU, Natarajan KA. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae. Colloids and Surfaces. B, Biointerfaces. 2011;88(1):45-50. http://dx.doi.org/10.1016/j.colsurfb.2011.05.054.

22 Merma AG, Torem ML, Morán JJV, Monte MBM. On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Minerals Engineering. 2013;48:61-67. http://dx.doi.org/10.1016/j.mineng.2012.10.018.

5c1299b10e8825d16dfd3a70 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections