Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.20191506
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EFFECT OF THE BLANK SURFACE CONDITIONS ON THE QUENCHING BEHAVIOR OF A HIGH THICKNESS 22MNB5 STEEL IN PRESSHARDENING PROCESS

EFEITO DA CONDIÇÃO SUPERFICIAL DO BLANK NO COMPORTAMENTO DE TÊMPERA DO AÇO 22MNB5 DE ELEVADA ESPESSURA NO PROCESSO DE CONFORMAÇÃO A QUENTE

João Henrique Corrêa de Souza, Diego Tolotti de Almeida, Vanessa Fischer da Silveira Fischer

Downloads: 1
Views: 996

Abstract

act Weight reduction in commercial vehicles is increasingly gaining importance, following an already well established trend in the modern car structures. However, the production of high thickness structural components using 22MnB5 steel requires a more profound knowledge of the effect of increased heat and cycle time on the quality of the final martensitic microstructure. The identification of new process parameters offers additional possibilities to control and stabilize the manufacturing process. In this study, the influence of the surface condition of 22MnB5 steel samples with 8.0 mm thickness on the mechanisms that characterize heat transfer by contact is discussed, as is the correlation of this parameter in the characterization of the martensitic transformation and hardness profile. For this, the test specimens with three different surface conditions (natural, ground and polished) were heated to austenitization temperature, and subsequently processed in an experimental tool provided with cooling channels. Through the results of the metallographic analysis and hardness profile, it was verified that the cooling rate is affected by the superficial condition of the specimens, as well as the resulting martensitic microstructure. Higher austenitization temperatures promote austenite grain growth and, thus, deteriorate properties such as toughness and crack propagation resistance.

Keywords

Hot stamping; Press-hardening; 22MnB5; Heat transfer rate; Surface preparation.

Resumo

A redução de peso em veículos comerciais está ganhando cada vez mais importância, seguindo uma tendência já bem estabelecida nas estruturas modernas de carros. No entanto, a produção de componentes estruturais de alta espessura usando aço 22MnB5 requer um conhecimento mais profundo do efeito do aumento do calor e do tempo de ciclo na qualidade da microestrutura martensítica final. A identificação de novos parâmetros de processo oferece possibilidades adicionais para controlar e estabilizar o processo de fabricação. Neste estudo, a influência da condição superficial de amostras de aço 22MnB5 com 8,0 mm de espessura nos mecanismos que caracterizam a transferência de calor por contato é discutida, assim como a correlação deste parâmetro na caracterização da transformação martensítica e do perfil de dureza. Para isso, os corpos de prova com três condições de superfície diferentes (natural, retificado e polido) foram aquecidos até a temperatura de austenitização e, posteriormente, processados em uma ferramenta experimental provida de canais de resfriamento. Através dos resultados da análise metalográfica e do perfil de dureza, verificou-se que a taxa de resfriamento é afetada pela condição superficial dos corpos de prova, bem como a microestrutura martensítica resultante. Temperaturas mais altas de austenitização promovem o crescimento de grãos de austenita e, assim, deterioram propriedades como tenacidade e resistência à propagação de trinca.

Palavras-chave

Estampagem a quente; Endurecimento por estampagem; 22MnB5; Taxa de transferência de calor; Preparação superficial.

Referências

1 Akerström P. Modeling and simulation of hot stamping [thesis]. Sweden: Lulea University of Technology; 2006.

2 Hein P. A Global approach of the finite element simulation of hot stamping. Advanced Materials Research. 2005;6- 8:763-770.

3 Lorenz D, Roll K. Modelling and analysis of integrated hot forming and quenching process. Advanced Materials Research. 2005;6-8:787-794.

4. Hill, N. Light weighting as a means of improving Heavy Duty Vehicles’ energy efficiency and overall CO2 emissions. Oxfordshire: Ricardo-AEA Ltd., 2015. (European Commission. Report for DG Climate Action; no. 1).

5 Karbasian, H., Tekkaya, A.E. A review on hot stamping. Journal of Materials Processing Technology. 2010;210:2103-2118.

6 Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchable ultra high strength steels with respect to a FE-based process design. In: Society of Automotive Engineers. Proceedings of the SAE World Congress: Innovations in Steel and Applications of Advanced High Strength Steels for Automobile Structures; 2008; Detroit, USA. Warrendale: Society of Automotive Engineers; 2008. p. 411-423.

7 Lechler J, Merklein M. 2008. Hot stamping of ultra-strength steels as a key technology for lightweight construction. In: Materials Science and Technology, Pittsburgh: MS&T; p. 1698-1709.

8 Naderi M. 2007. Hot Stamping of Ultra High Strength Steels - Doktors der Ingenieurwissenschaften, Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen, Germany.

9 Hein P. Numerical simulation of the hot stamping of automotive components with USIBOR 1500 P. In: Communicating European Research. Proceedings of the EuroPAM; 2005 Oct.; Potsdam, Germany. Brussels: Claessens; 2005. p. 1-17.

10 Lechler J, Merklein M, Geiger M. 2008. Determination of Thermal and Mechanical Material Properties of Ultra-High Strength Steels for Hot Stamping. Steel Research – Metal Forming.

11 Hyunwoo S., Fabbmann, D., Hoffmann, H., Golle, R., Schaper, M. An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. Journal of Materials Processing Technology. 2012;212:437-449.

12 Maity SK, Kawalla R. 2011. Ultrahigh strength steel: development of mechanical properties through controlled cooling. Heat Transfer – Engineering Applications. 309-336.

13 Kirkaldy JS, Venugopalan D. 1983. Prediction of microstructure and hardenability in low alloy steels. In: Marder AR, Goldstein JI, editor. International Conference on Phase Transformations in Ferrous Alloys. Philadelphia: The Metallurgical Society of AIME; p. 125-148.

14 Li MV, Niebuhr DV, Meekisho LL, Atteridge DG. A computational model for the prediction of steel hardenability. Metallurgical and Materials Transactions. 1998;29B(3):661-672.

15 Steinbeiss H, So H, Michelitsch T, Hoffmann H. Method for optimizing the cooling design of hot stamping tools. Production Engineering Research for Development. 2007;1:149-155.

16 Wilsius J, Hein P, Kefferstein R. Status and trends of hot stamping of USIBOR 1500P. Proceedings 1. Erlangen: 2006. Erlanger Workshop Warmblechumformung; p. 182-201.

17 Chen J, Li X, Han X. Hot Stamping. Comprehensive Materials Processing. 2014;13:351-353.

18 Malinowski Z, Lenardis JG, Davies ME. A study of the heat transfer coefficient as a function of temperature and pressure. Journal of Materials Processing Technology. 1994;42:125-142.

19 Bakri AH, Bourouga B, Dessain C. Thermal contact resistance estimation at the blank/tool interface: experimental approach to simulate the blank cooling during the hot stamping process. International Journal of Material Forming. 2010;3:147-163.

20 Fan DW, Kim HS, De Cooman BC. A review of the physical metallurgy related to the hot press forming of advanced high strength steel. Materials Technology. 2009;(3):241-248.

21 Romero HP, Bhadeshia H. Coalesced Martensite in Pressure Vessel Steels. Journal of Pressure Vessel Technology. 2014;136.

5c6c48ff0e88251939e6163a tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections