Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.20201835
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ANÁLISE COMPARATIVA DA ASPERSÃO DE CARBETO DE TUNGSTÊNIO EM TITÂNIO PELOS PROCESSOS DE HVOF E PLASMA SPRAY

COMPARATIVE ANALYSIS OF TUNGSTEN CARBIDE THERMAL SPRAY IN TITANIUM BY HVOF AND PLASMA SPRAY PROCESSES

Franciane Galvão Faria, Mariana Anastácia de Oliveira Schwarc, Claudinei Milan Tavares, Leandro Guimarães de Oliveira, Jose Cristiano Pereira

Downloads: 2
Views: 1290

Resumo

O objetivo deste estudo é verificar e comparar a qualidade do revestimento de carbeto de tungstênio - cobalto (83% WC e 17% Co) aplicado sobre material base de titânio por Plasma Spray e HVOF (High Velocity Oxygen Fuel), realizando análises de microestrutura para verificar o percentual de porosidade, espessura, tração e dureza, em amostras. Este estudo é de grande importância por haver um crescente uso desse revestimento para fornecer resistência ao desgaste com altos níveis de dureza e tenacidade, às superfícies de componentes, em muitas áreas da indústria. O material base escolhido para o estudo é a liga de titânio Ti6Al-4V (norma SAE AMS 4911). A análise das amostras apresentou que ambos os processos foram satisfatórios, com uma pequena vantagem no processo HVOF que produz revestimentos mais densos, duros e mais resistentes, além de ser uma boa escolha por suas características, considerando os requisitos de alta qualidade em muitas áreas das indústrias, como restauração de peças usadas na área de aviação. A análise apresentada aqui pode ser uma fonte inestimável de informações para profissionais e engenheiros de manufatura, no sentido de enriquecer seu conhecimento sobre esse tipo de revestimento e facilitar a decisão sobre quais processos utilizar.

Palavras-chave

Aspersão térmica; Plasma Spray; HVOF; Carbeto de tungstênio.

Abstract

The objective of this study is to verify and qualitatively compare the mechanical properties of tungsten - cobalt carbide deposition by Plasma Spray or High Velocity Oxygen Fuel (HVOF) processes on titanium base material, using tests such as metallography, traction and hardness. This study is of great importance due to the increasing use of this coating to improve wear resistance and surface hardness of components in various industry areas. The base material chosen for this study is titanium Ti6Al4V grade 5 (according to SAE 4911), an alloy widely used for its characteristics such as weight and durability. The analysis of the samples shows that both spraying processes were satisfactory with a slight advantage of the HVOF process which produces a harder and denser coating and is a good choice if you consider the high restoration quality requirements of surface area parts. aviation, for example. This analysis presented here can be an invaluable source of information for manufacturing professionals and engineers to enrich their knowledge of this type of coating and make it easier to decide which processes to use.

Keywords

Thermal spray; Plasma Spray; HVOF; Tungsten carbide.

Referências

1 Tucker, R. C. An overview of alternative coatings for wear and corrosion resistance. In: Thermal Spray 1998: Meeting the Challenges of the 21st Century, Proceedings of the 15th International Thermal Spray Conference; Nice, France. Nice: ITSC; 1998. vol. 1.

2 Huchin, J. P. The place of thermal spraying in industry today and the prospects for the future. In: Thermal Spray 1998: Meeting the Challenges of the 21st Century, Proceedings of the 15th International Thermal Spray Conference; Nice, France. Nice: ITSC; 1998. vol. 2.

3 Rhys-Jones TN. Thermally sprayed coating systems for surface protection and clearance control applications in aero engines. Surface and Coatings Technology. 1990;43-44:402-415. http://dx.doi.org/10.1016/0257-8972(90)90092-Q.

4 Lamana MS, Pukasiewicz AGM, Sampath S. Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings. Wear. 2018;398-399:209-219. http://dx.doi.org/10.1016/j.wear.2017.12.009.

5 Al-Mutairi S, Hashmi MSJ, Yilbas BS, Stokes J. Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC-12% Co powders. Surface and Coatings Technology. 2015;264:175-186. http://dx.doi.org/10.1016/j.surfcoat.2014.12.050.

6 Mishra TK, Kumar A, Sinha SK, Sharma S. Investigation of sliding wear behaviour of HVOF carbide coating. Mat. Today: Proceedings. 2018 [acesso em 3 out. 2018];5(9):19539-19546. Disponível em: https://www.sciencedirect.com/science/article/pii/S221478531831438X

7 Chen H, Hutchings IM. Abrasive wear resistance of plasma-sprayed tungsten carbide-cobalt coatings. Surface and Coatings Technology. 1998;107(2-3):106-114. http://dx.doi.org/10.1016/S0257-8972(98)00581-7.

8 TMS Titanium. Titanium and the Aerospace Industry. Poway, CA: TMS Titanium; 2013 [acesso em 15 jun. 2017]. Disponível em: https://tmstitanium.com/titanium-and-the-aerospace-industry

9 Hager CH Jr, Sanders J, Sharma S, Voevodin A. Gross slip fretting wear of CrCN, TiAlN, Ni, and CuNiIn coatings on Ti6Al4V interfaces. Wear. 2007;263(1-6):430-443. http://dx.doi.org/10.1016/j.wear.2006.12.085.

10 Oerlikon Metco. Material product data sheet: tungsten carbide: 17% cobalt agglomerated and sintered thermal spray powders. 2017.

11 American Society for Testing and. ASTM E-18: standard test methods for rockwell hardness and rockwell superficial hardness of metallic materials. Philadelphia: ASTM; 2001.

12 American Society for Testing and Materials. ASTM C-633: test method for adhesion or coeshive strength of flame sprayed coatings. West Conshohocken: ASTM; 2001.

13 American Society for Testing and Materials. ASTM E-2109: test method for determining area percentage porosity in thermal sprayed coating. West Conshohocken: ASTM; 2007.

5e74d7890e8825e3294778f6 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections