Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/tmm.2012.001
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

MICROABRASÃO DE LIGAS FERROSAS MULTICOMPONENTES

MICROABRASION OF MULTI COMPONENT FERROUS ALLOYS

Mello, José Daniel Biasoli

Downloads: 2
Views: 872

Resumo

Neste artigo analisa-se, pela técnica de microscopia eletrônica de varredura de alta resolução, o micromecanismo de desgaste predominante na microabrasão de ligas ferrosas multicomponentes Foram produzidas duas famílias de ligas com teores variáveis de vanádio ou molibdênio. Para cada série também foi produzida uma liga isenta de carbonetos. Todas as ligas foram tratadas termicamente de forma a produzir três diferentes níveis de dureza da matriz. Os ensaios foram executados em um microabrasômetro de tipo esfera livre, utilizando partículas finas de SiO2 como abrasivo. As marcas de desgaste foram analisadas pela técnica microscopia eletrônica de varredura. Adicionalmente, foram analisadas seções transversais produzidas por feixe iônico, focalizado pela técnica microscopia eletrônica de varredura de alta resolução. A presença de carbonetos eutéticos afeta fortemente o comportamento em abrasão de ligas ferrosas multicomponentes. O coeficiente de desgaste não é afetado pela natureza e fração volumétrica de carbonetos nem pela dureza da matriz. O mecanismo de desgaste predominante é o sulcamento paralelo característico do deslizamento das partículas na interface. A remoção preferencial da matriz pelas partículas finas de sílica diminui o suporte mecânico dos carbonetos causando fraturas graduais e arrancamento do carboneto.

Palavras-chave

Mecanismos de desgaste, Microabrasão, Ligas ferrosas multicomponentes, FIB

Abstract

In this paper, the effect of microstructural parameters (eutectic carbides and matrix hardness) on the micro abrasive wear of multi-component ferrous alloys abraded by soft, fine abrasive particles is analyzed. Two series of quenched and tempered alloys, with variable vanadium or molybdenum contents and fixed amounts of other elements, were tested. Each series includes an alloy free of carbides (matrix alloy) and alloys containing carbides (carbide rich alloys). Heat treatment produces three different levels of matrix hardness. Free ball micro-abrasion tests were conducted using SiO2 fine abrasives. The results show that the wear coefficient is not influenced by neither the nature and amount of eutectic carbides nor by the hardness of the matrix. Matrix alloys show a considerably higher micro abrasive wear rate (up to 5 times) than eutectic carbide rich alloys. Special emphasis is given to the wear mechanisms, characterized by Scanning Electron Microscopy and Laser interferometry techniques Analysis of transversal sections produced by using Focused Ion Beam and High Resolution Scanning Electron Microscopy tecniques show that the removal of matrix material due to abrasion with fine silica particles decrease the mechanical supporting of the carbides, which caused gradual fracture and their pull-out.

Keywords

Wear mechanisms, Ball-cratering test, Multi-component ferrous alloys, FIB

Referências

1 MATSUBARA, Y. et al Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements. Wear, v. 250, n. 1-2, p. 502-10, Oct. 2001. http://dx.doi.org/10.1016/S0043-1648(01)00599-3

2 BOCCALINI JUNIOR, M., GOLDENSTEIN, H. Solidification of high speed steels. International Materials Reviews, v. 46, n. 2, p. 92-115, Feb. 2001. http://dx.doi.org/10.1179/095066001101528411

3 DURAND-CHARRE, M. Microstructure of steels and cast irons. Berlin: Springer; Heidelberg, New York, 2004.

4 SUNGHAK LEE et al, Correlation of microstructure and fracture toughness in three high-speed steel rolls. Metallurgical and Materials Transactions A, v. 28, n. 1, p. 123-34, 1997. http://dx.doi.org/10.1007/s11661-997-0088-4

5 MATSUBARA, Y.; BOCCALINI, M. J.; SINATORA, A. Overview: high speed steels for hot rolling mill rolls. In: SEMINÁRIO DE LAMINAÇÃO PROCESSO E PRODUTOS LAMINADOS E REVESTIDOS, 37., 2000, Curitiba, PR. Proceedings… São Paulo: ABM, 2000. p. 587-96.

6 PARK, J. W.; LEE, H. C.; LEE, S. Composition, microstructure, hardness, and wear properties of high speed steel rolls. Metallurgical and Materials Transactions A, v. 30, n. 2, p. 399-409, 1999. http://dx.doi.org/10.1007/s11661-999- 0329-9

7 PELIZZARRI, M.; MOLINARI, A.; STRAFFELINI, G. Tribological behavior of hot rolling rolls. Wear, v. 259, n. 7-12, p. 1281-9, July-Aug. 2005.

8 PELIZZARRI, M., et al. Wear and friction behavior of high chromium iron and high speed steels for hot rolls. In: INTERNATIONAL CONFERENCE ABRASION 2005, 2005, São Paulo, SP. Abrasion wear resistant alloyed white cast iron for rolling and pulverizing mills. Proceedings… São Paulo: Instituto de Pesquisas Tecnológicas, 2005. p. 189-98.

9 SKOCZYNSKI, R. J.; WALMAG, G.; BREYER, J. P. High speed steel rolls in the hot strip mill. In: SARUC CONFERENCE 1997, Vanderbijlpark, Gauteng, South Africa, 1997. Proceedings… [S.n.t.]. p. 1-15.

10 KIM, C. K. et al Effects of complex carbide fraction on high-temperature wear properties of hard facing alloys reinforced with complex carbides. Materials Science & Engineering A, v. 349, n. 1-2, p. 1-11, May 2003. http://dx.doi. org/10.1016/S0921-5093(01)01850-0

11 MILAN, J. C. G. et al Efeito da força normal no comportamento tribológico em alta temperatura de um aço rápido. In: CONGRESSO ANUAL DA ABM, 58., 2003. Proceedings... São Paulo: ABM, 2003. p. 750-9.

12 MILAN, J. C. G. et al Effect of temperature, normal load and pre-oxidation on the sliding wear of multi-component ferrous alloys. Wear, v. 259, n. 1-6, p. 412-23, July-Aug. 2005.

13 HASHIMOTO, M. et al Development and application of high speed tool steel rolls in hot strip rolling. Nippon Steel Technical Report, n. 66, p. 82-90, Jul. 1995.

14 SINNAEVE, M. HSS work rolls for hot mill finishing stands: a real success story? In: INTERNATIONAL CONFERENCE ABRASION 2005, 2005, São Paulo, SP. Abrasion wear resistant alloyed white cast iron for rolling and pulverizing mills. Proceedings… São Paulo: Instituto de Pesquisas Tecnológicas, 2005. p. 107-28.

15 RABINOWICKS, E. Friction and wear of materials. New York: John Willey and Sons, 1965. 244 p.

16 ZUM GAHR, K.- H. Microestruture and wear of materials. Amsterdam: Elsevier, 1987. 560 p.

17 EYRE, T. S. Friction and wear mechanisms. In: SEMINÁRIO BRASILEIRO SOBRE MATERIAIS RESISTENTES AO DESGASTE, 2., 1991, Uberlândia, MG. Anais.. . São Paulo: ABM, 1991. p. 263-92.

18 HUTCHINGS, I. M. Tribology: friction and wear of engineering materials. London: Arnold, 1992. 273 p.

19 LUONG, L. H. S.; HEIJKOOP, T. The influence of the scale on friction in hot metal working. Wear, v. 71, n. 1, p. 93-102, Sep. 1981. http://dx.doi.org/10.1016/0043-1648(81)90142-3

20 MUNTHER, P.; LENARD, J. G. The effects of scaling on interfacial friction in hot rolling of steels. Journal of Materials Processing Technology, v. 88, n. 1-3, p. 105-13, Apr. 1999. http://dx.doi.org/10.1016/S0924-0136(98)00392-6

21 DE MELLO, J.D.B. Tribological behavior of multi-component ferrous alloys. In: INTERNATIONAL CONFERENCE ABRASION 2005, 2005, São Paulo, SP. Abrasion wear resistant alloyed white cast iron for rolling and pulverizing mills. Proceedings… São Paulo: Instituto de Pesquisas Tecnológicas, 2005. p. 19-45.

22 CHEN He-Xing et al. Effect of niobium on wear resistance of 15%Cr white cast iron. Wear, v. 166, n. 2, p. 197-201, July 1993. http://dx.doi.org/10.1016/0043-1648(93)90262-K

23 TABRETT, C. P.; SARE, I. R.; GHOMASHCHI, M. R. Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews, v. 41, n. 2, p. 59-83, 1996. http://dx.doi. org/10.1179/095066096790326075

24 SARE, I. R., ARNOLD, K. Gouging abrasion of wear-resistant alloy white cast irons. Wear, v. 131, n. 1, p. 15-37, May 1989. http://dx.doi.org/10.1016/0043-1648(89)90243-3

25 BADISCH, E.; MITTERER, C. Abrasive wear of high speed steels: Influence of abrasive particles and primary carbides on wear resistance. Tribology International, v. 36, n. 10, p. 765-70, Oct. 2003. http://dx.doi.org/10.1016/ S0301-679X(03)00058-6

26 RICHTER, J. Tribological evaluation of high-speed steels with a regulated carbide phase. Materials Characterization, v. 50, n. 4-5, p. 339-47, 2003. http://dx.doi.org/10.1016/j.matchar.2003.08.002

27 SILVA, C. R. S. Fadiga térmica de ferros fundidos brancos multicomponentes. 2003. 154 p. Dissertação (Mestrado em Engenharia Metalúrgica e de Materiais) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2003.

28 SILVA, C. R. S.; BOCCALINI, M. Thermal fatigue of high speed steels for rolls. In: INTERNATIONAL CONFERENCE ABRASION 2005, 2005, São Paulo, SP. Abrasion wear resistant alloyed white cast iron for rolling and pulverizing mills. Proceedings… São Paulo: Instituto de Pesquisas Tecnológicas, 2005. p. 93- 106.

29 DE MELLO, J. D. B.; DURAND-CHARRE, M.; HAMAR-THIBAULT, S. Solidification and solid state transformations during cooling of chromium molybdenum white cast irons. Metallurgical Transactions, A, v. 14, n. 9, p. 1793‑801, 1983.

30 KEUN CHUL HWANG; SUNGHAK LEE; HUI CHOON LEE. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls Part I: Microstructural analysis. Materials Science and Engineering A, v. 254, n. 1-2, p. 282-95, Oct. 1998.

31 WU, H. Q. et al. Solidification of Multi-alloyed white cast iron: type and morphology of carbides. AFS Transactions, v. 104, p. 103-8, 1996.

32 DE MELLO, J.D.B.; DURAND-CHARRE, M. Phase equilibria and solidification sequences of white cast irons containing Vanadium and Chromium. Materials Science and Engineering, v. 67, n. 1, 109-117, Oct. 1984. http://dx.doi. org/10.1016/0025-5416(84)90035-1

33 VERGNE, C et al Analysis of the friction and wear behavior of hot work tool scale: application to the hot rolling process. Wear, v. 250, n. 1-12, p. 322-33, Oct. 2001.

34 WERQUIN, J. C.; BOCQUET, J. The new generation of spun cast rolls in high-speed steels for hot strip mills. In: MECHANICAL WORKING AND STEEL PROCESSING CONFERENCE, 34.,1993, Montreal, Canada. Warrendale, Pa: ISS-AIME, 1993., v. 30, p. 135-51.

35 BLAU, P., J. Mechanisms for transitional friction and wear behavior of sliding metals. Wear, v. 72, n. 1, p. 55-66, Oct. 1981. http://dx.doi.org/10.1016/0043-1648(81)90283-0

36 MILAN J. C. G. et al Comportamento tribológico de materiais utilizados na confecção de cilindros de laminação a quente: uma nova metodologia de ensaio. In: SEMINÁRIO DE LAMINAÇÃO PROCESSOS E PRODUTOS LAMINADOS E REVESTIDOS, 41., 2004,Joinville – SC. Anais... São Paulo: ABM, 2004. v. 1,p. 13-22.

37 JIANG, J.; STOTT, F. H.; STACK M. M. Some frictional features associated with the sliding wear of the nickel-base alloy N80A at temperatures to 250ºC. Wear, v. 176, n. 2, p. 185-94, Aug. 1994. http://dx.doi.org/10.1016/0043- 1648(94)90146-5

38 STOTT, F. H.; JORDAN, M. P. The effects of load and substrate hardness on the development and maintenance of wear-protective layers during sliding at elevated temperatures. Wear, v. 250, n. 1-12, p. 391-400, Oct. 2001.

39 HONGSUG OH et al Correlation of microstructure with the wear resistance and fracture toughness of duo cast materials composed of high-chromium white cast iron and low-chromium steel. Metallurgical and Materials Transactions A, v. 32, n. 3, p. 515-24, Mar. 2001.

40 ZHOU, L, et al Unlubricated sliding wear mechanism of fine ceramic Si3N4 against high-chromium cast iron. Tribology International, v. 27, n. 5, p. 349-57, Oct. 1994. http://dx.doi.org/10.1016/0301-679X(94)90029-9

5886969b7f8c9dd9008b45f8 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections