Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/tmm.2013.006
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

CARBONATAÇÃO DO BASALTO E SEU POTENCIAL USO NO ARMAZENAMENTO DE CO2

BASALT CARBONATION AND ITS POTENTIAL USE IN CO2 STORAGE

Carneiro, Patricia; Dullius, Jeane; Lagabue, Rosabe; Machado, Claudia; Ketzer, João Marcelo; Einloft, Sandra

Downloads: 2
Views: 964

Resumo

Os níveis crescentes de CO2 na atmosfera são apontados como um dos principais responsáveis pelo aumento do efeito estufa. Há várias opções para a redução destes níveis sendo a Captura e Armazenamento de Carbono (CAC) apontada como uma forma eficaz de diminuir a concentração deste gás. Neste trabalho apresentam-se a carbonatação indireta de basalto, bem como, um estudo da abundância e ocorrência desse mineral e sua proximidade com fontes emissoras de CO2. Após a análise do mapa construído do cruzamento de regiões brasileiras com alta emissão e regiões onde se encontram basalto, conclui-se que as regiões Sul e Sudeste possuem um grande potencial para armazenamento geológico por possuir fontes emissoras muito próximas à área de basalto. A reação de carbonatação mostra-se eficiente, evidenciada após as análises por Absorção atômica, apresentando uma alta taxa de conversão dos íons lixiviados em carbonatos. As análises pelas técnicas MEV e EDS indicam a formação de precipitados de calcita ferrosa ressaltando a eficiência da carbonatação indireta.

Palavras-chave

Carbonatação, Basalto, Carbono, Armazenamento

Abstract

The increasing levels of CO2 in the atmosphere are indicated as a major contributor to the enhanced greenhouse effect. There are several options to reduce these levels and the Carbon Capture and Storage (CCS) is identified as an effective way to decrease the concentration of this gas. In this work, it is present the indirect carbonation of basalt, as well as, a study of abundance and occurrence of this mineral and its proximity to emission sources of CO2. After examining the map constructed by matching Brazilian regions with high emission and regions where there are basalt occurrences, one can conclude that the South and Southeast regions have a great potential for geological storage into basalt. This is due to the occurrence of emission sources very close to the basalt area. The carbonation reaction is efficient, as evidenced by atomic absorption analysis, showing a high rate of conversion of leached ions into carbonate. SEM and EDS analysis indicate the formation of precipitated ferrous calcite, which suggests an efficient indirect carbonation.

Keywords

Carbonation, Basalt, Carbon, Storage

Referências

1 PACALA, S.; SOCOLOW, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, v. 305, n. 5686, p. 968-972, Aug. 2004. PMid:15310891. http://dx.doi.org/10.1126/ science.1100103

2 SOLOMON, S. et al. (Eds.) Climate Change 2007: The physical science basis.contribuition. Contribution of Working Group I to the Fouth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Disponível em . Acesso em julho de 2007.

3 SEIFRITZ, W. CO2 disposal by means of silicates. Nature, v. 345, n. 6275, p. 486, June 1990. http://dx.doi. org/10.1038/345486b0

4 Lackner, K. S. A guide to CO2 sequestration. Science, v. 300, n. 5626, p. 1677-1678, June 2003. PMid:12805529. http://dx.doi.org/10.1126/science.1079033

5 Zevenhoven, R.; KAVALIAUSKAITE, I. Mineral carbonation for long term CO2 storage: and energy analysis. International Journal Thermodynamics, v. 7, n. 1, p. 22-31, Mar. 2004.

6 TEIR, S. Reduction of CO2 emissions by producing calcium carbonates from calcium silicates and steelmaking slags. 2006. 64 p. Thesis (Licensable)-Departament of Mechanical Engineering, Helsinki University of Technology, Helsinki, 2006.

7 TEIR, S. et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Applied Energy, v. 86, n. 2, p. 214-218, Feb.2009. http://dx.doi.org/10.1016/j.apenergy.2008.03.013

8 JUERG, M. M. et al. Permanent carbon dioxide storage into basalt: The Carbfix pilot project, Iceland. Energy Procedia, v. 1, n. 1, p. 3641-3646, Feb. 2009. http://dx.doi.org/10.1016/j.egypro.2009.02.160

9 AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 422 - Standard test method for particle-size analysis of soils. West Conshohocken, 2002.

10 ZEVENHOVEN, R. et al. Chemical fixation of CO2 in carbonates: routes to avaluable products and long term storage. Catalys Today, v. 115, n. 1-4, p. 73-79, June 2006. http://dx.doi.org/10.1016/j.cattod.2006.02.020

11 HOLZ, M.; DE ROS, L. F. Geologia do Rio Grande do Sul. Porto Alegre, CIGO/ IGeo/UFRGS, 2000. p. 354-370.

12 ALFREDSSON 1, H. A. et al. CO2 sequestration in basaltic rocks in Iceland: development of a piston-type downhole sampler for CO2 rich fluids and tracers. Energy Procedia, v. 4, p. 3510-3517, 2011.

13 WOLFF-BOENISCH, D. et al. Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: implications for mineral sequestration of carbon dioxide. Geochimica et Cosmochimica Acta, v. 75, n., 19, p. 5510- 5525, Oct. 2011.

14 ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Atlas de energia elétrica do Brasil. 2. ed. Brasília, 2005. Disponível em: . Acesso em: 14 ago. 2008.

15 IEA GREENHOUSE GAS R&D PROGRAMME (IEA GHG). UK, 2008. Disponível em: . Acesso em: 1 jun. 2008.

16 BIZZI, L. A. et al. Geologia, tectônica e recursos minerais do Brasil: sistema de informações geográficas – SIG. Brasília: CPRM, 2001. 4 CDRom.

17 IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2005.

18 PRIGIOBBE, V. et al. Analysis of the effect of temperature, pH, CO2 pressure and salinity on the olivine dissolution kinetics. Energy Procedia, v. 1, n. 1, p. 4881-4884, Feb. 2009. http://dx.doi.org/10.1016/j.egypro.2009.02.317

19 PRIGIOBBE, V. et al. Mineral carbonation process for CO2 sequestration. Energy Procedia, v. 1, n. 1, p. 4885-4890, Feb. 2009. http://dx.doi.org/10.1016/j.egypro.2009.02.318

20 DULLIUS, J. et al. CO2 storage with indirect carbonation using industrial waste. Energy Procedia, v. 4, p. 1010- 1017, 2011. http://dx.doi.org/10.1016/j.egypro.2011.01.149

21 LIGABUE, R. et al. Effect of time on the carbonation reaction of saline aquifers with controlled pH. Energy Procedia, v. 4, p. 4546-4551, 2011. http://dx.doi.org/10.1016/j.egypro.2011.02.412

22 JOHAN, F. et al. Carbonation of magnesium silicate mineral using a pressuried gas/solid process. Energy Procedia, v. 1, n. 1, p. 4907-4914, Feb. 2009. http://dx.doi.org/10.1016/j.egypro.2009.02.321

23 KREVOR, S.; LACKNER, K. S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. International Journal of Greenhouse Gas Control, v. 5, n. 4, p. 1073-1080, July 2011. http://dx.doi.org/10.1016/j. ijggc.2011.01.006

588696b07f8c9dd9008b4659 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections