Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/tmm.2013.038
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EFEITO DO PONTO DE ORVALHO DA ATMOSFERA DOS FORNOS DE RECOZIMENTO DA CGL NA QUALIDADE DO REVESTIMENTO GA EM AÇO BAKE HARDENABLE

EFFECT OF DEW POINT OF ATMOSPHERE OF CGL’S ANNEALING FURNACES ON THE QUALITY OF GA COATING ON BAKE HARDENABLE STEEL

Guimarães, Juliana Porto; Barbosa, Aldo Henrique de A.; Gonzalez, Berenice Mendonça; Anício, Deyselane de Fátima; Zacarias, José Januário

Downloads: 0
Views: 875

Resumo

A condição superficial do aço após o recozimento contínuo é de extrema importância para a qualidade do revestimento galvannealed (GA). A presença de óxidos ou precipitados pode afetar as reações na interface revestimento/substrato e diminuir a molhabilidade do zinco na superfície, provocando defeitos no produto final. Visando evitar a oxidação do material durante o recozimento, emprega-se uma atmosfera protetora nos fornos. Mas, apesar dessa atmosfera, é possível a oxidação seletiva ou precipitação de partículas de segunda fase, sendo o ponto de orvalho (PO) um dos fatores preponderantes no sentido de atenuar estas ocorrências. Neste estudo, avalia-se o efeito do PO sobre a qualidade de revestimento GA aplicado em aço bake hardenable. Em um Simulador de Processo de Galvanização a Quente realizou-se um recozimento contínuo sob pontos de orvalho de –60°C, –30°C e 0°C, assim como a galvanização a quente. Conclui-se que o PO é determinante para a quantidade, distribuição e tipo de óxidos formados, sendo a condição de –30°C a que proporciona a obtenção de um revestimento com menos falhas e melhor aderência.

Palavras-chave

Recozimento contínuo, Ponto de orvalho, Aço bake hardenable, Revestimento galvannealed

Abstract

The strip steel surface condition after continuous annealing of strip is extremely important to the quality of galvannealed coating (GA). The presence of oxides or precipitated can affect the reactions at the coating/substrate interface and decrease the zinc wettability on the steel surface, leading to various defects in the final product. To avoid oxidation of the material during continuous annealing, a protective atmosphere is used in the furnaces. Despite this atmosphere, it is possible the selective oxidation or precipitation of second phase particles, being the dew point of atmosphere one of the leading factors to reduce this occurrence. This study aims to evaluate the effect of the dew point on the quality of GA coatings applied to a bake hardenable steel. The continuous annealing under dew points of –60°C, 30°C and 0°C, as well as hot dip galvanizing, were performed in a Hot Dip Process Simulator. It is found that the dew point has a decisive influence on the amount, distribution and type of oxides formed, and the condition of –30°C provided the coating with less failures and better adhesion.

Keywords

Continuous annealing, Dew point, Bake hardenable steel, Galvannealed coating

Referências



1. Wagner C. Reaktionstypen bei der Oxidation von Legierungen. Winheim: Wiley-VCH, 1959.

2. Lamberigts M, Servais JP. Use of XPS to investigate surface problems in ULC deep drawing steels. Applied Surface Science. 1999;144-145:334-338. http://dx.doi.org/10.1016/S0169-4332(98)00822-8

3. Martinez C, Cremer R, Loison D, Servais JP. In-situ investigation on the oxidation behaviour of low alloyed steel annealed under N2-5%H2 protective atmospheres. Steel Research International.1999;72:508-511.

4. Eynde XV, Servais JP, Lamberigts M. Investigation into the surface selective oxidation of dual-phase steels by XPS, SAM and SIMS. Surface and Interface Analysis. 2003;35:1004-1014. http://dx.doi.org/10.1002/sia.1639

5. Parezanović I, Spiegel M. selective oxidation and surface segregation in high strenght steels during short term annealing in H2-N2 – Influence of B on surface chemistry. Steel Research International. 2005;76:832-839.

6. Cvijović I, Parezanović I, Spiegel M. Influence of H2-N2 atmosphere composition and annealing duration on the selective surface oxidation of low-carbon steels. Corrosion Science. 2006;48:980-993. http://dx.doi.org/10.1016/j. corsci.2005.02.022

7. Bellhouse EM, Mertens AIM, Mcdermid JR. Development of the surface structure of TRIP steels prior to hot-dip galvanizing. Materials Science and Engineering: A. 2007;463:147-156. http://dx.doi.org/10.1016/j.msea.2006.09.117

8. Swaminathan S, Spiegel M. Thermodynamic and kinetic aspects on the selective oxidation of binary, ternary and quaternary model alloys. Applied Surface Science. 2007:253:4607-4619. http://dx.doi.org/10.1016/j. apsusc.2006.10.031

9. Onyriuka EC. Aluminum, titanium boride and nitride films sputter-deposited from multicomponent alloy targets studied by XPS. Applied Spectroscopy. 1993;47:35-37. http://dx.doi.org/10.1366/0003702934048488

10. Parezanović I. Selective oxidation and segregation in commercial steels and model alloys (tools for improving the surface wettability by liquid Zn during hot dip galvanizing) [doctoral thesis]. Aachen: RWTH Aachen University; 2005.

11. Blumenau M, Norden M, Friedel F, Peters K. Reactive wetting during hot-dip galvanizing of high manganese alloyed steel. Surface and Coatings Technology. 2011;205:3319-3327. http://dx.doi.org/10.1016/j.surfcoat.2010.11.053

12. Huachu L, Yanlin H, Swaminatha S, Rohwerder M, Lin L. Effect of dew point on the surface selective oxidation and subsurface microstructure of TRIP-aided steel. Surface and Coatings Technology. 2011;206:1237-1243. http://dx.doi. org/10.1016/j.surfcoat.2011.08.038

13. Guttmann M, Lepretre Y. Aubry A, Roch MJ Moreau T, Drillet P et al. Mechanism of the galvanizing reactions - influence of Ti and P contents in steel and of its surface microstructure after annealing. In: Proceedings Galvatech’95; 2005; Chicago, Estados Unidos. London: Iron and Steel Society; 2005. p. 295-307.

14. Strohmeier BR, Rotole JA, Sherwood PMA. Gamma-alumina (γ-Al2O3) by XPS. Surface Science Spectra. 1998;5:18‑24. http://dx.doi.org/10.1116/1.1247852
588696e67f8c9dd9008b4755 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections