Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/tmm.2014.033
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

MECANISMOS DE ENDURECIMENTO EM AÇO MICROLIGADO Nb-Ti-V

STRENGTHENING MECHANISMS IN Nb-Ti-V MICROALLOYED STEEL

Martins, Vinícius Lopes Vieira; Vasconcelos, Felipe Pereira; Gallego, Juno

Downloads: 3
Views: 1059

Resumo

A elevada resistência mecânica e tenacidade dos aços microligados são resultantes da otimização dos diferentes mecanismos de endurecimento atuantes na liga. No presente trabalho a interação entre a microestrutura e o limite de escoamento de um aço comercial com baixo carbono e multimicroligado foi investigada. Amostras na condição laminada foram observadas por microscopia óptica e MET, quando parâmetros microestruturais que afetam a resistência mecânica - tais como tamanho de grão da ferrita, densidade de discordâncias e precipitação de carbonitretos - foram determinados. O incremento de resistência mecânica obtido com cada um dos mecanismos avaliados foi estimado com a aplicação de modelos empíricos coletados na literatura. O refino do grão ferrítico foi considerado o mecanismo de endurecimento mais efetivo. A precipitação de carbonitretos na austenita e durante a transformação de fase austenitaferrita (precipitação interfásica) também contribuíram com o aumento de resistência mecânica. Verificou-se que o limite de escoamento estimado pelo efeito cumulativo das diferentes contribuições analisadas foi bastante aproximado ao limite de escoamento determinado experimentalmente.

Palavras-chave

Aço microligado, Microestrutura, Mecanismos de endurecimento, Microscopia eletrônica de transmissão.

Abstract

Yield strength of Nb-Ti-V microalloyed steel has been investigated as a function of its microstructure obtained after industrial rolling on a hot strip mill. Optical (OM) and transmission electron microscopy (TEM) were used to reveal the ferrite grain structure, fine carbonitride precipitation and dislocation substructures. It was found that the effects of solid solution and grain size hardening were not sufficient to justify the results of tensile testing. Additional strengthening was attributed to carbonitride precipitation in austenite, interphase precipitation during transformation, and the formation of dislocations. All contributions of these microstructural features on mechanical property were estimated from empirical models available from literature. A global effect of both austenite and interphase carbonitride precipitation hardening was proposed. It was verified that yield strength calculated from cumulative effect of different strengthening mechanisms has presented good fitting with experimental tensile test.

Keywords

Microalloyed steel, Microstructure, Strengthening mechanisms, Transmission electron microscopy.

Referências



1. Lu J, Omotoso O, Wiskel JB, Ivey DG, Henein H. Strengthening mechanisms and their relative contributions to the yield strength of microalloyed steels. Metallurgical and Materials Transactions A. 2012;43A:3043-3061.

2. Mao X, Huo X, Sun X, Chai Y. Strengthening mechanisms of a new 700MPa hot rolled Ti-microalloyed steel produced by compact strip production. Journal of Materials Processing Technology. 2010;210(12):1660-1666. http://dx.doi.org/10.1016/j.jmatprotec.2010.05.018

3. DeArdo AJ. Metallurgical basis for thermomechanical processing of microalloyed steels. Ironmaking and Steelmaking. 2001;28(2):138-144. http://dx.doi.org/10.1179/030192301678055

4. Honeycombe RWK. Carbide precipitation in HSLA steels. Chicago: Proc. Microalloyed HSLA Steels; 1988.

5. Pickering FB. Physical metallurgy and the design of steels. Londres: Applied Science Publishers; 1978.

6. Gladman T. The physical metallurgy of microalloyed steels. Londres: The Institute of Materials; 1997.

7. Keh AS. Work hardening and deformation sub-structure in iron single crystals in tension at 298K. Philosophical Magazine. 1965;12(115):9-30. http://dx.doi.org/10.1080/14786436508224942

8. American Society for Testing and Materials. ASTM E112-12: standard test methods for determining average grain size. West Conshohocken; 2012.

9. American Society for Testing and Materials. ASTM E562-11: standard test method for determining volume fraction by systematic manual point count. West Conshohocken; 2011.

10. Gallego J. Investigação por microscopia eletrônica de transmissão do endurecimento por precipitação de carbonitretos em aços comerciais microligados ao vanádio [dissertação de mestrado]. São Carlos: Universidade Federal de São Carlos 2003.

11. Ham RK. The determination of dislocation densities in thin films. Philosophical Magazine. 1961;6(69):1183-1184. http://dx.doi.org/10.1080/14786436108239679

12. Davenport AT, Honeycombe RWK. Precipitation of carbides at gamma-alpha boundaries in alloy steels. Proceedings of the Royal Society A. 1971;322(1549):191-205. http://dx.doi.org/10.1098/rspa.1971.0063

13. Kestenbach HJ, Morales EV. Transmission electron microscopy of carbonitride precipitation in microalloyed steels. Acta Microscopica. 1998;7(1):22-33.

14. Underwood EE. Practical solutions to stereological problems: practical applications of quantitative metallography. Philadelphia: ASTM; 1984. p. 160-179. Special Technical Publication.

15. Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Nova York: Springer Science and Business Media; 2009.

16. Kestenbach HJ. Estudo metalográfico de carbonetos eutéticos em aços microligados ao Nióbio. In: Anais do IV Congresso Brasileiro de Engenharia e Ciências dos Materiais; 1980; Florianópolis, Brasil. 1980. p. 615-624.

17. Baker RG, Nutting J. The tempering of a Cr-Mo-V-W and a Mo-V steel. Iron and Steel Institute Special Report. 1959;(64):1-22.

18. Jian L, Fuyu S, Wenchong X. On the evaluation of yield strength for microalloyed steels. Scripta Metallurgica et Materialia. 1990;24(7):1393-1398. http://dx.doi.org/10.1016/0956-716X(90)90362-K

19. Kestenbach HJ, Campos SS, Gallego J, Morales EV. Discussion of Precipitation Behavior and its Effect on Strengthening of an HSLA-Nb/Ti Steel. Metallurgical and Materials Transactions A. 2003;34A(4):1013-1017. http://dx.doi.org/10.1007/s11661-003-0231-9

20. Hong SG, Kang KB, Park CG. Strain-induced precipitation of NbC in Nb and Ti-Nb microalloyed HSLA steels. Scripta Materialia. 2002;46(2):163-168. http://dx.doi.org/10.1016/S1359-6462(01)01214-3

21. Morales EV, Gallego J, Kestenbach HJ. On coherent carbonitride precipitation in commercial microalloyed steels. Philosophical Magazine Letters. 2003;83(2):79-87. http://dx.doi.org/10.1080/0950083021000056632
588696f07f8c9dd9008b4784 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections