ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT*

Felipe Rocha Caliari 1
Elias Felipe da Rosa 2
Maria Auxiliadora da Silva 3
Danieli Aparecida Pereira Reis 4

Abstract

Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six) times bigger (~0.15 mA) than those of double aged surfaces (~0.025 mA).

Keywords: Double aging heat treatment; Pitting corrosion; Inconel 718.

I INTRODUCTION

Since 1930 nickel base superalloys are mainly used in aerospace applications, due to their high mechanical resistance, good creep, fatigue and corrosion properties and potential to work in elevated temperatures. One of the most important superalloys, Inconel 718, has been used in nuclear, cryogenic, oil and mostly aerospace industries. For example Inconel 718 is the backbone of jet turbines, both civil and military. This superalloy has a Ni-Fe-Cr matrix and alloying elements that produce secondary phases such as Ni3(Al, Ti) (\(\gamma'\)) gamma prime; Ni3Nb (\(\gamma''\)) gamma double prime, also eta (\(\eta\)) hexagon close packed Ni3Ti; delta (\(\delta\)) orthorhombic Ni3Nb and other topologically close packed phases such as Laves and \(\mu\). Heat treatments such as double aging promote increase in its structural stability by inducing the precipitation of \(\gamma'\) and \(\gamma''\), which confers the mechanical resistance of Inconel 718 [1,2].

1 Chemical Engineer, Doctoral student, Federal University of São Paulo, São José dos Campos, SP, Brazil. E-mail: felipercaliari@yahoo.com.br
2 Technologist in aircraft maintenance, MsC. Student, Technological Institute of Aeronautics, São José dos Campos, SP, Brazil. E-mail: elias_felipe26@hotmail.com
3 Chemical, Researcher, Technological Institute of Aeronautics, São José dos Campos, SP, Brazil. E-mail: silva.mauxiliadora@gmail.com
4 Chemical Engineer, Researcher, Federal University of São Paulo, São José dos Campos, SP, Brazil. E-mail: danielireis@hotmail.com
Due to the presence of chromium and aluminum and formation of their respective stable oxides, the passivation of Inconel 718 surfaces is achieved, conferring its characteristic corrosion resistance. Metals that form passive layers are susceptible to localized corrosion (pitting), which consists in the formation of short extension and deep cavities. This kind of corrosion initiates due to the break of passivation film, usually in defects such as inclusions, dislocations, grain boundaries or other interfaces.

This work studies the pitting corrosion potential of the superalloy Inconel 718, before and after double aging heat treatments. The samples were submitted to corrosion tests by adaptation of the methods of pitting corrosion potential suggested in Yashiro et al. [3] and ASTM F746-04 [4].

2 EXPERIMENTAL PROCEDURE

The superalloy Inconel 718 was furnished by Multialloy Co. Its chemical composition is described in Table 1. The material was produced via VIM/VAR, forging and solution treated, with an ASTM grain size of 8.20 [5].

The double aging heat treatment is described in Table 2. The first step is the solid solution (Inconel 718 with an exposed surface of 0.785 cm2), a reference three electrodes was used: a working electrode (Inconel 718 and solution treated, with an ASTM grain size of 8.20 [5]) interfaced to a microcomputer via the USB-IF030 interface and controlled by the GPES software. In order to characterize the pitting formation, the surfaces were analysed using a Tescan – Vega 3XMU electron microscope equipped with EDS system of microanalysis. In order to characterize the pitting formation, SEM/EDS analysis were done in as received and aged samples after cyclic voltammetry tests. In these tests the potential was varied from zero up to 3 V and the current levels reached values up to 10^{-2} A/cm2. Cyclic voltammetry and chronoamperometric experiments were conduct to determine the breakdown potentials (E_b), potential at which a significant increase in the current was observed, and the pitting potentials (E_p), respectively (each experiment was repeated 5 times). The cyclic voltammetry experiments were performed starting from the open circuit potential (OCP), after 01 hour of exposition to the electrolyte solution, varying the working electrode potential with 5 mV/s rate up to (OCP+400) mV; and reverting the potential to the starting one. The chronoamperometric experiments were also performed after 01 hour of exposition of each surface to the electrolyte solution, starting with an applied potential E_1 ($E_1 = E_b - 30$ mV) and holding this potential for 120 s. Following this first experiment, the working electrode surface was freshly polished, exposed to the electrolyte solution for 01 hour, a potential $E_2 = (E_1 + 20$ mV) was applied and held for 120 s. Step 02 was repeated, increasing the applied potential at each step by 20 mV until and an increase in the current was observed.

3 RESULTS AND DISCUSSION

Initially the procedure ASTM F746-04 was used to determine the pitting corrosion potential. Following this procedure, firstly the OCP is determined, after that the potential is shifted to (OCP+0.8) V and then the values of current against time are recorded. If localized corrosion is not stimulated within the initial 20 s, the potential is kept at $+0.8$ V (SCE) for an additional 15 min. If localized corrosion cannot be stimulated even after 15 min, the test is terminated, and one can only conclude that the critical pitting potential (E_c) is $> (OCP+0.8)$ V. In order to precisely determine the critical pitting potential the procedure described by Yashiro et al. [3], an chronoamperometric procedure, was then conducted. But before that the breakdown potential (E_b) was obtained by cyclic voltammetry. This potential was used as starting potential in the chronoamperometric experiments.

Figure 1 presents representative cyclic voltammograms of the as received and double aged Inconel 718 surfaces exposed to the chloride containing aqueous solutions. The breakdown potential of the as received Inconel 718 surfaces ($E_b^{(AR)}$) was (1.03±0.03) V while that of the double aged surfaces ($E_b^{(DA)}$) was (0.98±0.01) V.

The similar values of E_b potentials indicate that thermodynamically there is no significant difference in

Table 1. Chemical composition (wt. %) of Inconel 718

<table>
<thead>
<tr>
<th>Cr</th>
<th>Ni</th>
<th>Si</th>
<th>Mo</th>
<th>Ti</th>
<th>Nb</th>
<th>Fe</th>
<th>Al</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.94</td>
<td>54.47</td>
<td>0.04</td>
<td>1.35</td>
<td>1.05</td>
<td>5.89</td>
<td>17.99</td>
<td>0.27</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 2. Double aging heat treatment steps

<table>
<thead>
<tr>
<th>Heat treatment steps</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid solution</td>
<td>1095°C; 1.0 h/AC</td>
</tr>
<tr>
<td>Double aging step</td>
<td>955°C; 1.0 h/AC</td>
</tr>
<tr>
<td></td>
<td>720°C; 6.5 h/FC</td>
</tr>
<tr>
<td></td>
<td>720°C; 1.5 h/FC</td>
</tr>
<tr>
<td></td>
<td>620°C; 8.0 h/AC</td>
</tr>
</tbody>
</table>

Where: AC – Air cooling; FC – Furnace cooling.
corrosion trend of Inconel 718, before and after the heat treatment.

Figures 2 and 3 show results of the chronoamperometric experiments performed for as received and double aged Inconel 718 surfaces, respectively, exposed to the sodium chloride solution.

From the chronoamperometric results it can be observed that for the as received Inconel 718 the pitting corrosion potential is \((1.21 \pm 0.03)\) V while for the double aged sample it is \((1.13 \pm 0.01)\) V. The values of \(E_p\) potentials indicate that \(E_b\) is not a good parameter to decide over the thermodynamic pitting trend of Inconel 718 in chloride containing media. Despite the similar values of \(E_b\) of as received and double aged Inconel 718 surfaces, the pitting potential \(E_p\) of as received is nobler than that of the double aged surfaces. Therefore, thermodynamically, the double aged surfaces are more susceptible to pitting formation than the as received ones. Moreover, at the pitting corrosion potential, the induction time for pitting corrosion observed on double aged Inconel 718 surfaces is twice longer \((\sim 40\) seconds\) than that of the as received surfaces \((\sim 20\) seconds\). However, when the corrosion starts at the respective pitting potential, the pitting corrosion current on the as received surfaces is 6 (six) times higher \((0.15\) mA\) than that of the double aged surfaces \((0.025\) mA\). This means that when pit formation starts it is more severe in the as received Inconel 718 (solution treated) than in the double aged.

A previous study of the microstructure evolution [6] from the as received to the double aging condition on Inconel 718, performed in our laboratory, showed that after double aging, secondary phases basically composed by Ni/Ti and Ni/Nb, finely dispersed all over the Ni-Cr-Fe matrix, precipitates in Ni-Cr-Fe matrix, whereas in the as received microstructure clusters of Ti and Nb were observed. The formation of sigma (\(\sigma\)) and \(\alpha\)-Cr, phases generally associated with chromium segregation, was not observed. As observed by Wlodek and Field [7], who analyzed Inconel 718 submitted to long time exposure to...
the temperature of 649°C, the formation of phases enriched in chromium (σ and α-Cr) can be observed only after long hours and their precipitation is associated with delta (δ) formation.

The pitting formation was investigated via SEM images after induction of pitting formation on cyclic voltammetry tests at same test conditions. The microstructure of the as received and double aged condition before corrosion tests can be found in [6]. Figure 4 shows one pit over the surface of Inconel 718, with approximately 50 μm diameter. The EDS map scan is also shown in this figure and reveals a depleted chromium zone at the border of the pit, while the same area is apparently enriched with molybdenum, niobium, titanium, aluminum, and oxygen.

Figure 5 details one pit near a grain boundary triple point on Inconel 718 double aged surface. The diameter of the pit showed in Figure 5, 8 μm approximately, is smaller than that of the pit in Figure 4 (as received condition). The pitting formation in both conditions represents the entire surface of the samples. The map scan performed on double aged sample also showed a depleted chromium and titanium zone at the border of the pit and an enrichment of this zone with aluminum, molybdenum, niobium and oxygen. For the analysis of double aged specimen surface area, the thick oxide layer covering most of the area had to be first removed by polishing to reveal the pit.

Therefore, the EDS map scans showed in Figures 4 and 5, allow to conclude that the pitting formation on as received Inconel 718 surfaces could be mainly associated to the low capability to form thick chromium oxide over these surfaces, while in the double aged surfaces, the pitting formation can be associated to the grain boundaries precipitated phases, specially of titanium rich phases, which preferentially oxidize together with chromium.

Similar research was previously conducted on Inconel 718 surfaces submitted to mill finishing and machine hammer peening [8]. In that research the authors concluded that the higher corrosion resistance of heat treated surfaces was due to the aging treatment itself, which promotes surface smoothing and larger compressive residual stress. Another aspect that could entail the different corrosion resistance on Inconel 718 before and after aging treatment could be related to the grain

![Figure 4](image_url)

Figure 4. Image of a pit in Inconel 718 as received, and the EDS map scan of the main elements around this pit.
Analysis of pitting corrosion on an Inconel 718 alloy submitted to aging heat treatment

The pitting corrosion rate on the as received Inconel 718 (solution treated) surface is higher than in double aged. The pitting corrosion currents on the as received surfaces are about 6 (six) times bigger (~0.15 mA) than on double aged surfaces (~0.025 mA). The lower pitting corrosion resistance of as received Inconel 718 is probably attributed to the larger grain boundary area per unit volume. Besides that, after double aging this superalloy shows higher corrosion resistance probably due to surface smoothing, larger compressive residual stress and capability to form thick oxide layer. SEM/EDS results showed at the pitting border of both conditions a chromium depleted zone enriched with molybdenum, niobium, titanium and aluminum.

4 CONCLUSIONS

From the presented results, it can be concluded that:

• The procedures suggested in standard ASTM F746-04 [4] and Yashiro et al. [3] separately are not adequate to obtain information about pitting corrosion potential of the Inconel 718 in chloride containing aqueous solution, probably due to the elevated corrosion resistance of this alloy. However, it is possible to obtain pitting corrosion information by combining the procedures suggested in these two standard procedures;

• The as received Inconel 718 has a pitting corrosion potential of (1.21±0.03) V, whereas the double aged condition has a potential of (1.13±0.01) V. However, when the pit forma-

Acknowledgments

The authors are grateful to Capes, CNPq and FAPESP for the financial support.
REFERENCES

Received: 01 Nov. 2013
Accepted: 16 June 2014