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Abstract

The present study deals with the prediction of contaminant concentrations in kaolin using Partial Least Squares 
Regression (PLS-R). The aim is to show that PLS-R method can be used to predict contaminant concentration in kaolin. 
High level kaolin means a kaolin with high-brightness. Since brightness is directly related to the reflectance spectrum and 
kaolin contaminants affect the reflectance spectrum it is important to the beneficiation of kaolin relates optical features 
and contaminants. Depending on the product to be produced, the optical parameters will influence how the kaolin will be 
processed. High-brightness kaolin and two red and yellow inorganic pigments were used to simulate colours contaminants 
frequently found in Brazilian kaolins, such as, hematite, goethite, rutile and anatase. By adding different pigment concentrations 
to the pure kaolin, it was possible to create a small dataset containing the visible reflectance spectrum of each sample 
with the respective optical quality parameters of the kaolin. Results allow us to conclude that PLS-R can predict through 
the reflectance spectrum the contaminant concentration of the kaolin with R-squared equal 0.9954 for red content and 
R-squared equal 0.9973 for yellow one.
Keywords: Kaolin clays; Reflectance spectra; Brightness; Partial Least Squares.

ESPECTROSCOPIA DO CAULIM: USO DE PLS-R PARA PREDIZER O 
CONTEÚDO DE CONTAMINANTES

Resumo

O presente estudo trata da predição da concentração de contaminantes presentes no caulim através do uso de 
Partial Least Squares Regression (PLS-R). O objetivo é mostrar que PLS-R pode ser usada para prever o conteúdo de 
contaminantes no caulim. Para o caulim ser alto nível é preciso ter alta alvura. Como alvura está diretamente vinculada ao 
espectro de reflectânica e este é afetado pelos contaminantes é importante para o processamento de caulim relacionar 
contaminantes com parâmetros ópticos. Os parâmetros ópticos do caulim influenciam como ele será produzido. Caulim 
de alta alvura e dois pigmentos inorgânicos amarelo e vermelho foram usados para simular contaminantes encontrados 
no caulim brasileiro, como, hematita, goetita, rutilo e anatásio. Adicionando diferentes concentrações de pigmento 
ao caulim puro, foi possível criar uma base de dados contendo o espectro de reflectância de cada amostra com seus 
respectivos parâmetros ópticos de qualidade. Conclui-se que PLS-R, através do espectro de reflectância, pode prever as 
concentrações dos contaminantes do caulim contaminado com R2 igual a 0,9954 para contaminante vermelho e R2 igual 
a 0,9973 para amarelo.
Palavras-chave: Caulim; Espectro de reflectância; Alvura; Partial Least Squares.

1 INTRODUCTION

There are in the world many different types of 
industrial minerals, which are derived from different geological 
formations [1]. Among most widely used are talc, kaolin, mica, 

barite, bentonite, quartz, diatomite, and calcium carbonate 
(natural and precipitated). Industrial minerals are applied to 
products and processes, such as raw materials or additives, 
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where R(λ) = Reflectance values within the wavelength 
range 400 to 500 nm; F(λ) = Values of the TAPPI function 
within the wavelength range 400 to 500 nm.

1.2 CIELAB

Colour is a matter of perception and subjectivity 
of interpretation. Avoiding problems, colour must be 
expressed objectively through numbers, thus ensuring that 
the final product conforms to its specifications. There are 
several colour measurement systems. The most commonly 
used colour system is the CIE (International Commission 
of Illumination). CIEL* a* b* or CIELAB in which there 
are three axes: L* indication that varies from light (+) to 
dark (-), a* indication that varies from red (+) to green (-), 
and b* indication that varies from yellow (+) to blue (-), it is 
used to indicate that colour is perceived through reactions 
of the eye to sensations of opposite colours [19,20].

1.3 Partial Least Square Regression (PLS-R)

In data analysis, the goal is optimizing a performance 
criterion using example data or experience, learning and 
discovering some rules or properties from the given 
dataset [21,22]. Partial Least Square (PLS) is a multivariate 
data regression method for modelling relations between sets 
of observations by means of latent variables. According to 
Conceição [23] PLS is a multivariate regression method that 
relates the data matrix X to a Y response, which can be a 
singular y (a response variable) or multiple Y (more than 
one response variable). PLS is a powerful tool for finding 
the relationship between the matrix X and the response 
matrix, particularly for datasets that have more variables 
than observations and in which the variables have noise and 
collinearity [24,25]. The regression equation to describe the 
response y, as a linear combination of the matrix X and the 
regression coefficients follows the Equation 2:

= +y XB F 	 (2)

where F is the remaining information that was not modelled; 
B is the regression coefficient matrix.

PLS is a simple regression method to find the regression 
coefficients matrix, where the matrices of the data X and Y are 
decomposed into main components or latent variables. 
Conforming to Conceição [23] PLS modelling is also explained 
as a two-step process, developed simultaneously. In the 
first step, the two data blocks, X and Y, are decomposed 
into several factors, in this case known as latent variables, 
plus a residue matrix corresponding to the non-modelled 
data. Latent variables, such as the main components, can be 
represented as the product of the score and loading vectors 
or as the product of the matrices in which these vectors 
were grouped according to Equations 3 and 4.

' ' ' '...1 1 2 2 r rX t p t p t p E TP E= + + + + = + 	 (3)

in various industrial segments, such as ceramics, paints, paper, 
plastics, rubbers, fertilizers, cements and building materials. 
Industrial minerals are also called functional fillers because they 
reduce the consumption of more expensive raw materials and 
confer specific properties to the products according to the 
mineral filler used. Among the main properties of functional 
fillers, one can cite the optical properties that give visual 
appearance and are rigidly controlled. Kaolin is one of the most 
important clay-minerals and presents special characteristics. It is 
applied in the manufacture of paper, ceramics, paints, etc [2,3]. 
The main kaolin deposits in the world located in Georgia State 
(USA) and in the Amazon region, north of Brazil. Many of 
the kaolin impurities are associated with iron and titanium 
oxides [4-9]. Optical properties of kaolin are very important 
in most of its industrial applications [10]. In most cases, 
brightness is used as the optical comparison parameter, as well 
as the coordinates L*, a* and b* [11]. Presence of impurities 
and contaminants such as hematite and goethite contribute 
significantly to the reduction of the brightness value [12,13]. 
Conventional analyses to determine the content of iron in 
kaolin use methods that are time consuming and generate 
chemical residues [14]. On the other hand, methods using, 
for example, visible spectroscopy associated with multivariate 
methods such as Partial Least Squares Regression (PLS-R) can 
provide fast and accurate results [15]. The aim of this study is 
to show that reflectance spectra in the visible light associated 
with multivariate regression method, in this approach, Partial 
Least Squares Regression (PLS-R) method, can be applied to 
predict the contaminant concentration values of kaolin based 
on their reflectance spectra.

1.1 Brightness

Brightness ISO is defined as the blue light reflectance 
corresponding to the spectral distribution with the specific 
wavelength of 457 nm for a perfectly diffuse surface 
(TAPPI T 535-om-03) [16]. It only considers the blue part 
of the spectrum, ignoring the yellow and red parts. When 
brightness is calculated by a colorimeter, only the length 
457 nm is taken into consideration, otherwise, when using 
a spectrophotometer, a range of 400 to 500 nm (TAPPI 
standard T452-om-02) [17] is evaluated. Hence, it may be 
that the value of the whiteness does not represent what 
the human eye sees. Another important fact is that kaolin 
contaminants act on different parts of the reflectance spectrum 
because they have different colours. This turns out to be 
a disadvantage in the use of brightness as a parameter of 
quality or comparison [18,19].

The Equation 1 for calculating brightness follows 
the form:

 ( ) ( )( )
( )
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Where T and U are scores matrices, P and Q are loadings 
matrices, and X and Y are the data blocks (X, instrumental 
measurements and Y, responses), and r is the number of 
latent variables. The matrices E and F are the residues 
associated with modelling and r is the number of principal 
components. The scores represent the coordinates of 
the samples in the main component system and loadings 
represent the relative contribution of each original variable 
to the formation of the same. In PLS there is a compromise 
between explaining the variance in X and obtaining the 
highest correlation with Y [25].

2 MATERIALS AND METHODS

2.1 Contaminants

Brightness and colour can be improved by several 
processes used by kaolin producers. Major contamination 
sources of kaolin are iron and titanium oxides that can 
cause the kaolin to have cream, pink or reddish coloration. 
The quantification and removal of these contaminants are 
fundamental for improvement the brightness and colour 
of kaolin. Artificial contaminants based on iron oxide 
with red and yellow coloration along with a sample of 
kaolin benefited of high brightness were used. In this way, 
contamination of each kaolin sample was strictly controlled. 
The purpose of using the red and yellow colours was to 
simulate the colours of the contaminants that are normally 
found in kaolin. The visible reflectance spectrum of the 
kaolin without contamination is different from the yellow 
and red contaminants and that difference is associated with 
the contamination concentration. The reflectance spectrum 
of red contaminant shows reflection in 600 nm to 700 nm 
range, otherwise, yellow contaminant shows reflection in 
540 nm to 700 nm range (Figure 1).

2.2 Experimental Procedure

The contaminants were added to the kaolin in two 
ways: a) red contaminant only (0.1% to 1%) and b) yellow 
contaminant only (0.1% to 1%). Six samples of kaolin were 
performed for each contraction of red and yellow contaminants 
at concentrations 0.1; 0.2%; 0.3%; 0.4%; 0.5%; 0.6%; 
0.7%; 0.8%; 0.9%, and 1%. In total, there are 120 samples: 
60 contaminated with yellow pigment and 60 with red 
contaminant, and three pure samples (kaolin, yellow pigment, 
and red pigment). After the contaminants were mixed with the 
kaolin pressed tablets of each mixture were made. The pellets 
were prepared by means of a metal cylinder, glass plate, and 
pneumatic press. The cylinder was placed on top of the glass 
plate and inside it the mixture of kaolin and contaminant was 
pressed. The surface in contact with the glass was used to measure 
the optical parameters of the mixture. Three measurements 
were made for each parameter and the value adopted for 
calculations was the average of these three measurements. 
A spectrophotometer Minolta model 2600d with optical system 
with spherical geometry d/8°, standard illuminant D65, and 
standard observer 10° was used to measure the reflectance 
spectra from the samples, and their colorimetric parameters 
(L*, a* and b*). The spectrophotometer was calibrated using 
standards for white and black.

2.3 Multivariable Models

In order to generate the multivariable models, two 
data matrices were created. The first using matrix X to 
store the reflectance spectrum, L*, a*, b* and brightness of 
the samples, and matrix Y to store the response variables 
(contaminant concentration). Before the models were 
created, the data was standardized (by subtracting the mean 
and then dividing by the standard deviation). In purpose of 
removing sources of undesirable variations of spectral data, 
the following pre-treatments were used: Kubelka-Munk 
transformation and multiplicative signal correction (MSC) 
to minimize the effects of light scattering; normalization to 
remove systematic variation and 1st derivative to correct 
baseline problems [26,27]. In the construction of the 
multivariate regression models, 116 reflectance spectra 
were used (four samples were left out), of which 78 spectra 
were used for calibration of the model and 38 spectra were 
used for external validation of the model. Capability of the 
calibration model to predict contaminant content based on 
spectra data was assessed using the prediction errors and 
correlation coefficients between the contaminant values 
estimated by the model using spectra and the reference 
values of the calibration set samples.

The number of latent variables (LV) in the construction 
of a PLS model is very important. In the determination of 
that number of LVs used in the model, a cross-validation 
(internal validation) was performed in the calibration set: 
a sample of the calibration set is excluded, the model was 
constructed, and its contaminant content was then estimated. 
The process was repeated until all samples are taken and 
PRESS [22] was computed. The models were developed with 

Figure 1. Spectrum of sample reflectance for the pure sample (KAO) 
and the yellow (YEL) and red (RED) contaminants. Red contaminant 
showing reflection in the 600 to 700 nm range and yellow showing 
reflection in the 540 nm to 700 nm range.
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PLS-2 in two stages: one for calculate de red contaminant 
and one for yellow contaminant. The multivariable models 
were created using The Unscrambler software. Evaluating 
the performance of the numerical model against reference 
values, the error parameters used were:

a) Root Mean Squared Error (RMSE) [22]:

( )ˆ 2n
i ii 1 y y

RMSE
n r 1
= −

=
− −

∑ 	 (5)

where n is number of samples and r is the number of latent 
variables.

The mean errors of the Root Mean Square Error of 
Calibration (RMSEC) and Root Mean Square Error of Prediction 
(RMSEP) were calculated from the RMSE (Equation 5). 
Measuring the calibration error, cross validation was used 
with the method called leave-one-out.

b)	 Correlation coefficients between the prediction and 
measured values were calculated for the calibration 
set, which were calculated as Equation 6, where iy  
is the mean of the reference measurement results 
for all samples in the training set [22].
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3 RESULTS AND DISCUSSION

3.1 Colorimetric Parameters of the Samples

Concentrations ranging 0.1% to 1% of both contaminants 
were used to evaluate how the models would behave under 
conditions of contaminated samples and to model from low 
to high values. Using only samples with low concentrations 
of contaminants would make it impossible to predict samples 
with high contamination values. Figure 2 shows the evolution 
of the contamination on the kaolin spectrum by yellow (a) 
and red (b) contaminants, the higher the contamination, the 
greater the influence on the reflectance spectrum.

Reflectance spectra of pure kaolin, pure red contaminant 
and, pure kaolin mixed with the same concentrations of yellow 
and red contaminants are represented in the Figure 3. In the 
Figure 3, the way of each contaminant affects the spectrum of 
the kaolin is observed; red contaminant let its typical sign at 
wavelengths where the red colour has more influence, from 
600 nm to 700 nm and a contaminant with yellow colouration 
is observed to act at wavelengths different from red. Yellow 
acts from 540 nm to 700 nm, also letting its presence well 
marked on the spectrum of kaolin. Still observing Figure 3, 
three spectra are observed, one for pure kaolin and the other 
two for pure kaolin mixed one with red and the other with 
yellow contaminant. The concentration of the yellow and red 
contaminants is equal, 0.1%. Equal concentrations of contaminants 
act differently in kaolin reflectance spectra. The influence 

of the red contaminant, which could represent iron oxides 
such as hematite, goethite, limonite and magnetite, present in 
Brazilian kaolin, affects the brightness more significantly than 
the yellow contaminant that could represent impurities rich 
in titanium such as rutile and anatase. Pure kaolin spectrum 
had the optical parameters as follow: Brightness = 88.17, 
L* = 96.95, a* = - 0.05, and b* = 3.29. When contaminated 
with 0.1% of yellow the optical parameters were altered to 
Brightness = 83.57, L* = 96.17, a* = 0.63, and b* = 5.34. 
Changing the contaminant for 0.15 of red, parameters 
changed to Brightness = 80.52, L* = 93.81, a* = 3.07 and, 
b* = 3.22. When red is the contaminant it caused greater 
reduction in the brightness value than the reduction caused 
by the presence of the yellow one, at the same concentration. 
The explanation for this is that the colour of the sample is the 
result of a complex relationship between optical properties of 
the pigments and the kaolin matrix. These optical properties 
(index of refraction, absorption, transmission, diffusion, etc.) 

Figure 2. Reflectance spectrum of pure kaolin contaminated with 
pigment concentration (0.1% to 1%) of (a) yellow and (b) red pigment.

Figure 3. Reflectance spectrum of pure kaolin contaminated with the 
same concentration (0.1%) of red and yellow pigment.
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are determined not only by the chemical nature but also by 
the size, shape and texture of each grain. Thus, properties 
of the red contaminant make its interaction with the kaolin 
less matt than the yellow contaminant.

3.2 Prediction of Contaminant Concentration

In mineral deposits, kaolin is associated with coloured 
contaminants and their quantification and removal is costly. 
Quantification of these contaminants is usually done through 
X-ray diffraction, X-ray fluorescence, Fourier transform 
infrared specstroscopy [28,29]. Another quick and inexpensive 
solution is the use of the Kubelka-Munk theory (K-M) that 
makes use of the reflectance spectrum of a sample.

K-M theory-based models relate reflectance to the 
scattering and light absorption of pigments. The proposal of 
this study is to apply a different approach from those models. 
The goal is the calculation of pigments content based only 
on the reflectance spectrum and on the mark left by each 
contaminant. It was used pre-treatments [25-27] to remove 
sources of undesirable variations of spectral data. The X matrix 
was built with the transformed spectral data and mean centering 
and autoscaling were applied on the data. Number of LVs was 
chosen by comparing PRESS with LV and the LV number chosen 
was what minimized PRESS, in that case LV was 5.

3.2.1 Red and yellow content prediction

In purpose of multiple regression, it is very important to 
verify the collinearity between the input variables: reflectance 
spectrum, L*, a*, b* and, Brightness. So that the relationship 
between them does not interfere in the results, causing erroneous 
or unreliable inferences. Verifying the existence and select 
the variables that would be excluded from the database, the 
leverage (hi) value of the variables was used. Conforming to 
Esbensen et al. [26] leverage is directly related to the robustness 
of the model. The use of leverage indicated that the variables L*, 
a*, b* and, brightness had high collinearity with the reflectance 
spectra. This can be explained by the fact that these parameters 
are calculated from the reflectance spectrum, therefore, in 
the study, only reflectance spectrum was used. Capability of 
the calibration model to predict contaminant content based 
on spectra data was assessed using the prediction errors 
(Equation 5) and correlation coefficients (Equation 6) between 
the contaminant values estimated by the model using only 
reflectance spectra and the reference values of the calibration 
set samples. According to the best PLS model using 5 latent 
variables the error parameters RMSEC equal 0.0996, SEC 
equal 0.1002, BIAS equal 0.006 and R squared equal 0.9782 for 
RED model and RMSEC equal 0.0754, SEC equal 0.0789, BIAS 
equal 0.001 and R squared equal 0.9876 for YELLOW model.

3.3 Validation

The calibration model for the prediction of red and 
yellow pigment content was validated by external validation. 
A set of 38 reflectance spectra were used. Figure 3 shows 
the good correlation between the values of the red pigment 

content (a) and the yellow pigment (c) of the sample set and 
the experimental values for the samples used in the external 
validation set. The low dispersion of the predicted values 
around the regression line reveals a good model predictability. 
Observing figures (a) and (c) it is also possible to verify the high 
correlation between the values predicted by the proposed 
model and its reference values, demonstrating the absence 
of systematic errors in the results. The validation analysis 
showed that RMSEP equal 0.1283, SEP equal 0.1299, BIAS 
equal 0.0046 and R squared equal 0.9954 for RED model 
(a) and RMSEP equal 0.1091, SEP equal 0.1105, BIAS equal 
0.0042 and R squared equal 0.9973 for YELLOW model (c). 
The results showed that PLS could interpret the nonlinear 
relationship between the matrix data X and the response 
variables y, in this case the red and yellow content.

Figure  4 also presents validation errors for red 
(b) and yellow models (d). The distribution of validation 
residuals for validation set demonstrates that the model is 

Figure 4. reference samples versus predicted samples for red (a) 
and yellow model (c) and, validation errors per sample for red (b) 
and yellow (d) model.
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robust and presents a good fit. Validation errors presented 
low values for both models, however for the model with 
yellow contaminant, the values of greater contamination 
presented the biggest errors.

4 CONCLUSIONS

Kaolin is a very important clay mineral in several 
industrial segments and its optical properties are highly valued. 
In this study the use of Partial Least Squares (PLS) method 
for determination of contaminant concentration of kaolin, 
contaminated by red and yellow pigments. These pigments 
simulated frequent elements that could contaminate Brazilian 
kaolin clays, such as hematite, goethite and rutile, giving them 
different colour aspects. A database was constructed where 
the colorimetric response or the optical parameters were 
directly related to the contaminant content added to the 
pure kaolin. The use of the reflectance spectrum brings much 
larger amount of information about the contaminants than just 
the brightness value. The contaminants had different colours 
so that the phenomena of absorption and scattering of light 
were also different and affected the reflectance spectrum of 

kaolin at different wavelengths. Partial Least Squares method 
managed to capture the changes that contaminants cause in 
the reflectance spectrum of pure kaolin. Using PLS, it was 
possible to correlate the contaminant-modified reflectance 
spectrum with the pigment content. Moreover, PLS is suitable, 
to some extent, to obtain a multiple regression model for 
treat collinear spectroscopic data and predict coloured 
pigments concentration, overcoming some overfitting 
contamination effects. In conclusion, results allow us to assert 
that PLS-R can predict through the reflectance spectrum 
the contaminant concentration of the kaolin with RMSEP 
equal 0.1283 and R-squared equal 0.9954 for red content, 
and RMSEP equal 0.1091 and R-squared equal 0.9973 for 
yellow one. In addition, PLS is a powerful tool to aid in the 
prediction of the colorimetric contaminant of kaolin.
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