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Abstract

Ultrafine particles are object of main health concern, but its concentration is challenging to be continuous monitored 
in mineral and metallurgical industrial processes. This paper shows the development of an empirical regression model 
correlating the ultrafine particles concentration measured by two continuous analyzers, electrodynamic (EDA) and optical 
scatter (OSA) with meteorological and process parameters. The analyzers were installed at stack of an industrial mineral 
fertilizer plant over 4 seasons. The results showed that EDA have poor correlation with process or meteorological parameters 
(r-squared less than 10%) what can be caused by particles not being charged evenly on the stream as its better accuracy 
for particles over 10µm, as previous studies had suggested. The OSA ultrafine particles concentration model showed 
r-squared of 45% correlation with meteorological parameters and raw material feed. The model presented and standard 
error of 0.21 mg/Nm3 which is considered adequate for industry compliance purposes. OSA shows promising application 
if meteorological parameters are included, as already in practice for ultrafine particles monitoring outdoors.
Keywords: Continuous dust analysers; Ultrafine particles; Regression model; Mineral fertilizer.

1 Introduction

The mineral fertilizer industry produced in 2018 around 
62 million tons of ammonium nitrate/ calcium ammonium 
nitrate (AN/CAN) over the world [1]. When producing AN/
CAN there is emission of ultrafine particles (UFP) mainly 
formed in gas phase, no matter which production process 
is employed but, when using prilling towers (PT) the issue 
becomes critical due to the high air flow needed. Besides that, 
their health impact is significant once the human exposure 
to particulate matter (PM) is correlated with an increase in 
cardiac and respiratory morbidity and mortality [2].

Combining the transient nature of UFPs with stricter 
regulations in place from WHO [3] regarding concentration 
level of called PM1 (dust with diameter below 1000nm) 
being reviewed and intended to be published in 2020 the 
need for accurate continuous monitoring of these type of 
particles with existing methods and equipment is urgent to 
be evaluated and validated.

1.1 Mapping of potential parameters in 
prilling fertilizers with AN/CAN

The approach here employed was to identify which 
meteorological and process parameters could potentially 
influence the UFP emission or the reading of those instruments, 
defining a system which includes inlet and outlet parameters 
of the prilling tower under study.

The potential variables were defined based on prilling 
related literature [4-9] and listed in Table 1. For instance 
Shirley et al. [9] have applied quick freezing to prilling of 
ammonium nitrate, urea, and potassium nitrate to improve 
cooling, reducing the air flow needed while obtaining the 
same or increased production rates while Partridge et al. [7] 
studied the effect of liquid dynamic viscosity, rotation rate 
and orifice size in laboratory and pilot scale PT concluding 
that the increase on the rotation rate generates a decrease 
of primary and secondary droplets. Also Séquier et al. [4] 
when prilling molten lipids, have obtained spherical prills 
when adjusting prilling melt temperature and have observed 
coalescence of liquid droplet during their fall, what they 
assumed was caused by turbulence into the air column.

The flow rate of raw materials fed to the PT was 
collected from the Distributed Control System (DCS) and 
included in Table 1, which will be the base for building 
the UFP model. These flow rates change over time due to 
the recipe of fertilizer under production and can affect the 
emission of UFP.

1.2 Ultrafine particle concentration methods

There are standard and reliable methods to measure 
concentration for PM10 and for PM2.5 (±10% error for 
PM2.5) yet not continuous, developed and validated [10] 
but per authors knowledge nothing similar is available for 
UFP. Studies concerning UFP shows a difference between 
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matter emission authors as Padoan et al. [15] for road dust 
emissions, Moser et al. [16] for aerosol emission on post 
combustion pilot plant have applied regression models.

Consistent with the technology scenario described, 
this paper aims to develop empirical models based on 
regression, for two distinct online analyzers installed at 
stack of a fertilizer industrial plant, correlating the UFP 
concentration to process and meteorological parameters over 
four seasons in Europe. Finally, there will be evaluated if 
the method current in use for UFP ambient monitoring can 
be applied to industrial stationary stacks.

2 Methodology

This work was performed at an industrial mineral 
fertilizer plant, where more than 40 different grades are 
currently produced. The potential set of candidate variables 
included both process and meteorological parameters. The 
particle characterization was performed with ELPI+ and the 
concentration at the stack monitored with both optical scatter 
and electrodynamic trap techniques. The results from four 
seasons monitoring was examined employing Minitab 19@.

2.1 Industrial process set-up

The process is based on reaction from phosphate rock 
and nitric acid and after some separation steps the called 
mother liquor is mixed with potassium chloride and ammonia 
(also some formulas take small amounts of other nutrients 
source), generating a melt in high temperature (over 140°C) 
which is pumped to a centrifugal bucket with small holes 
inside the Prilling Tower (PT) [5]. As showed in Figure 1, 
the melt droplets fall in the tower and are cooled down by 
ambient air in counter-current flow. The UFP is carried to the 
top of the PT by 6 fans connected to their respective stack. 
The analyzers were installed at the same position where 

methods (light scattering and personal gravimetric samplers) 
at a factor of 2.23, for instance in an in-mine application [11].

Galvão et al. [12] when studying trends in analytical 
techniques applied to particulate matter characterization 
highlighted the importance of the knowledge of particles 
properties, sampling even in a controlled environment as 
the laboratory.

The measurement of semi volatile UFP, for instance, 
is discussed by Wilson et al. [10] specially in the case of 
sulfates and nitrates where the concentration and composition 
changes due to the process but also to the location and season.

The commercially available PM analyzers are based 
mainly on two principles, electrodynamic and optical trap 
or scatter [13]. The electrodynamic balance (EDA) stably 
traps charged aerosol particles by balancing the aerosol 
particle in an electric field. This stable trap is sensitive to 
changes in mass. On the other hand, OSA trap uses a laser 
beam passing through the flow creating an optical trap. OSA 
can trap smaller particles up to hundreds on nanometers.

1.3 Modelling techniques for experimental data

Modelling experimental data is widely used, however 
few papers deal with particulate matter (6121 research papers 
from 2010 until 2020) and just 8 were found to be related 
to stationary sources, from those only one is regarding 
UFP or PM less than 1µm [14]. These figures show the gap 
between the stricter regulations by WHO and governmental 
agencies over the recent years and the level of maturity on 
this research field.

Statistical methods help understanding variables 
responses in experimental investigations among many 
engineering related areas. A web-search on Science Direct 
platform in 2019 by the authors showed that for the last 
10 years response surface methodology, linear regression 
model and artificial neural network model were the most 
employed methods while in research related to particulate 

Table 1. Data set employed

Type of variable Variable Unit Example
Date text 5/1/18 12:00 AM
Time # 43221.00

Process Parameters Liquor to PT t/h 46.66
Salts to PT t/h 13.37
Off-spec flow to PT t/h 16.33
NH3 gas to PT kg/h 15.38
Mixer rotation rpm 508.77
Bucket rotation rpm 175.73
Melt temperature °C 83.12
Liquor temperature °C 104.99

Meteorological Parameters Air temperature °C 4.60
Relative humidity (RH) % 89.00
Precipitation mm/h 0.60
Wind speed m/s 11.30

Output of Analyzers OSA u/m3 160.65
EDA u/m3 1.58



Regression modeling to predict ultrafine particles emission in a mineral plant combining meteorological and process variables

3/8Tecnol Metal Mater Min. 2021;18:e2428

gravimetric sampling takes place, 20 diameters after top of 
PT and 3 diameters before the end of stack.

2.2 Characterizing and measuring 
concentration of UFP

In order to characterize the PM emissions from stack, 
ELPI®+ [17] was employed, once it can provide online 
concentration and PSD (particle size distribution) changes in 
the continuous process and still keep samples in 14 different 
stages to estimate its composition. The aluminum foils were 
pre-greased to avoid re-entrainment for the next stages.

A design of experiments was performed (second 
order with middle point) with a grand total of 9 tests each 
with duration of 30min under same product but different 
meteorological conditions to evaluate the PSD of the emissions 
at stack. The concentrations are expressed in mass.

To collect enough material to chemical characterization 
a test was performed under stable operation until the impactor 
ELPI+ was full (the pressure drop over the impactor can 
no longer be kept under 35mbar). The aluminum foils from 
each of the 14 stages was analyzed with SEM/EDS (scanning 
electron microscopy / energy dispersive x-ray spectroscopy).

Two continuous monitoring sensors from PCME [18] 
were installed at stack, being optical scattering analyzer 
(OSA) model PCME QAL 181 with certification range of 
0-15mg/Nm3 and measurement capability of 0-300mg/Nm3 
and electrodynamic analyzer (EDA) model PCME STACK 
980 with certification range of 0-15mg/Nm3 and measurement 
capability of 0-500mg/Nm3.

2.3 Dataset preparation and regression techniques

To develop the model, data from three different sources 
was collected. The DCS (Distributed Control System) from 

the plant operation, meteorological data from the closest 
meteorological station and finally the output from two 
continuous dust analyzers (OSA and EDA).

Meteorological data such as temperature, wind speed, 
relativity humidity (RH) and precipitation were collected 
from the nearest measurement station (1.2km far from the 
stack monitored in straight line). The results were available 
in hour average basis.

There were employed 6,215 complete hourly data 
sets, representing 344 days under stable mass flow (product 
mass flow from 60 to 180 t/h).

For the statistical analysis of data set it was used 
Minitab® 19 software and linear regression models. The 
statistical indicators considered here will be coefficient 
S (standard error in the regression), r-square which is the 
percentage of response variation explained by a linear model. 
The significance of parameters will be evaluated by p-value, 
F-test and residuals.

3 Results and discussions

3.1 Characterization of PM under study

The result of characterization of PM is presented in 
Figure 2 where the confidence interval for the mean is 95%. 
The PM has a monodisperse distribution with a median of 
aerodynamic diameter of 1.23µm from 9 tests performed. 
The particles smaller than 1.24µm represent 78% of the 
mass distribution. When taking into account the number of 
particles, up to 93% of particles are smaller than 0.75µm 
leading to classify them as ultrafine particles [19,20].

Soysal et al. [19] when discussing the challenges of 
measuring concentration for fine PM highlight that ELPI 
measures current in real-time but demands the previous 
knowledge of effective density. In this case the effective 
density set on ELPI+ was 1.36 g/cm3 for ammonium nitrate 
compounds [21].

Figure 1. Industrial Prilling Tower (PT) set-up. Figure 2. PSD of mineral fertilizer aerosol in each impactor stage.
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Samples of the PM collected over a long test (5h 
sampling) were taken to SEM/ EDS in order to understand 
their composition, although only stage 1.24µm gave 
significative results. The other stages contained very small 
amount of sample, even after 5h sampling time, that was 
not possible to determine its concentration.

Figure 3a shows the foil under study. One of the 
agglomerates is showed on Figure 3b with 180 times 
magnification and a further increase to 1500 times 
magnification is presented on Figure 4 which one shows 3 
different types of particles, marked as A, B and C. There 
is a region where the main area is covered by gray particle 
agglomerates (A). In the center of the image there are some 
potential single light-gray particles (B) and next to it some 
white agglomerate (C).

The results found from SEM/EDS excluded Aluminum 
from the detected elements due to the fact the foil (substrate) 

is made of Al. Besides that, no source of Aluminum is 
used in this plant. Later, the presence of Carbon was found 
to be due to the grease applied on the aluminum foil to 
ensure attachment of particles to the foil surface and avoid 
re-entrainment.

The chemical composition of the UFPs presented in 
Figure 4 suggests that the main component here is ammonium 
nitrate what is in accordance to the effective density parameter 
inputted in the ELPI+ (area A). Area B has composition 
that potentially can be FNO3, SiF4, in addition to the carbon 
from the greased foil, while area C shows the ammonium 
chloride aggregated. In this area the shape and color are in 
agreement with the crystal description.

With the knowledge of the product composition under 
handling in the prilling tower having 21% nitrogen, 11% 
potassium, 6% phosphorous and 4.4% sulfur, no correlation 
was found with UFPs composition what leads to conclude 

Figure 3. (a) Stage 1.24µm support, Al foil, substrate and UFPs; (b) One UFP agglomerate.

Figure 4. (a) Magnification of 1500 times of UFP agglomerate with particles named as A, B and C and (b) Chemical composition of A, B and C.
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that most part of the emissions come from the reactions in 
gas phase, once no phosphorous neither potassium was found 
on the chemical mapping of the emissions. Also, ammonium 
nitrate can evaporate, under equilibrium up to 50% of its mass, 
in size ranges from 1 to 2.5µm while ammonium sulphate 
up to 25% of its mass under same conditions [10], leading 
to potential large deviations when comparing concentration 
measured using ELPI+ with gravimetric sampling.

3.2 EDA UFP concentration as a function of 
process and meteorological parameters

When correlating the process and meteorological 
parameters with the output of EDA, the best correlation result 
found was when employing Box-Cox transformation with 
optimal lambda equal to -0.40. Based on this transformed 
response S was equal to 0.28 mg/m3 and r-squared of 9.49%. 
The F-test for the regression model obtained was 53.91 and 
p-value equal to 0 what so the model obtained is considered 
significant.

Parameters as liquor and salts flow to PT, mixer 
rotation, bucket rotation and wind speed are not significant 
by the criteria here applied (significance level of 5%). The 
resulting model can then be written as per Equation 1.

-EDA(-0.40) = -1.220+ 0.000680 NH3 to PT+  
0.001303 Off-spec flow to PT + 0.000295  
Liquor temperature- 0.000123 Melt temperature + 
0.010916 Air temperature+ 0.04463 Precipitation + 
0.003288 RH%  

(1)

The air temperature is by far the most significant 
parameter in the model, followed by RH% and precipitation. 

Only two other process parameters have significance, being 
liquor temperature and NH3 flow, what is not consistent 
to behavior found by other authors as Séquier et al. [4], 
Couper et al. [6], Wu et al. [22], Wong et al. [8] and 
Shirley et al. [9]. Once there is data available for the ambient 
air just in meteorological station, not in the stack itself, it 
remains the question on if is RH% influencing or not the 
output of EDA.

The analysis of residuals from Figure 5 shows the 
difference between predicted values by the model and 
measured results.

The residuals are basically dispersed in the range 0 to 
20 mg/Nm3 (employing the calibration factor of 5.45 mg/Nm3 
to u/m3 which is the raw reading of the sensor EDA) what 
indicates that some parameter is missing in the analysis [23].

Based on the literature studied when building the 
model, no potential relevant variable was left aside that could 
explain such a poor fit of the model besides what was already 
mentioned for Figure 5 regarding the meteorological parameters 
monitored from the closest station. Sullivan et al. [13] point 
out that the electric field strength required to stably trap the 
particle provides an accurate real-time measurement if the 
charge state is known although tests for single particles have 
being performed only on the range greater than 10 µm in 
diameter. None similar study was found for UFPs by the 
knowledge of authors.

3.3 OSA UFP concentration as a function of 
meteorological and process parameters

The best regression model for OSA PM concentration 
was obtained by Box-Cox transformation with lambda equal 

Figure 5. Model residuals for EDA over seasons.
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0 (natural log) where the standard error found was 0.72 
(equivalent to 0.21mg/Nm3), r-squared equal to 45.25% and 
F-value of 425 with p-value equal to 0 what can be considered 
significant model result once in this process under study the 
“Best Available Technique” emission is 5mg/Nm3 [24] and 
the standard error here found is equivalent to only 4.4% 
over the whole year monitored.

Also, the inclusion of the constant term in the model 
ensures that all non-explained effects are considered. 
When not including the constant term in the model the 
r-squared for the same data set would be 96.34%, although 
not realistic. Once no such model has been found in the 
literature a comparison was made with authors studying 
ambient air modelling. Padoan et al. [15] for example 
found a r-squared of 74% when modelling road dust 
emissions with a much smaller data set while Xu [25] 
found 60 to 80% r-squared using dust aerosol optical depth 
with PM10 results and Sieniutycz and Szwast [26] with 
neural networks were able to predict PM10 with 75 to 
86% r-squared and Denby et al. [27] found r-squared of 
28% when modelling PM10 in salt road emissions. P-value 
for NH3 flow to PT, mixer rotation and precipitation were 
over 0.05 so they are not considered significant by the 
criteria here applied and the model can be written as per 
Equation 2.

ln (OSA) = 16.69 + 0.007973 Liquor to PT  
- 0.015599 Salts to PT + 0.00323 Off-spec  
flow to PT- 0.01627 Bucket rotation 0.000591  
Liquor temperature + 0.000762 Melt temperature + 
0.08369 Air temperature + 0.00893 Wind speed + 
0.007250 RH% 

(2)

The precipitation can be a contributor factor to relative 
humidity (RH%) which one was significant in the emissions 
model for OSA, but not on its own, probably because of its 
irregular distribution over the area, once the weather station 
is located 1.2km far from the stack monitored. Besides 
that, the year under analysis presented a dry summer with 

no precipitation, what can be interpreted in the model as a 
constant parameter. The same applies to NH3 flow to the 
PT and the mixer rotation, once its little variation over time 
makes them not relevant for the model.

The transformation used to normalize the dataset 
when building the model seems to be adequate as can be 
seeing in Figure 6a, where the line is the model and the 
black triangles represent the residual when applying the 
model to the experimental results, if considered that this 
is an industrial application, not a controlled environment 
while the residuals presented a random distribution what 
led to conclude the OSA model has included most relevant 
parameters in the process, in the whole period, besides 
during fall and winter there is a trend to underestimate PM 
emissions. The residuals on Figure 6b appear to be higher 
than for EDA (Figure 5) but the magnitude order is different 
once for OSA the correlation to mg/Nm3 is about 0.3 times 
while for EDA is 5.45 times.

Winter is a challenge for the model as showed 
on Figure 6b once during this season there is a trend of 
underpredicting the emissions. This behavior could de due 
to the gases thermodynamic properties. In the area studied 
often negative temperatures are observed with low RH% and 
lower gas viscosity, leading the gas stream to have particles 
less agglomerated freely moving that could affect the sensor 
capacity to measure this very small UFPs considering that 
the wavelength of the optical sensor employed on OSA is 
650nm.

The air temperature is by far the most significant 
parameter on the model, but here also the raw materials flow 
to the PT are showed as responsible for UFPs concentration 
showing that the optical sensor was able to measure this 
contribution. Gong et al. [28] states that optical scattering 
have developed enough to be applied on understanding UFP 
changes in the environment they are inserted and Mitchem 
and Reid [29] have studied the use of optical sensor to 
manipulate and characterize single particles in the range 
of 1 to 10µm.

Figure 6. (a) Residuals versus model plot for OSA; (b) Model residuals for OSA over seasons.
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air temperature, salts flow to PT, RH% and liquor flow to 
PT, respectively.

Particulate matter in the process studied was 
classified as UFPs and it was observed that its composition 
differs significantly from the product under handling due to 
reactions in gas phase producing mainly instable ammonium 
nitrate, ammonium chloride, ammonium fluoride and silicon 
tetrafluoride.

The current official methods employed to evaluate 
the calibration of continuous PM concentration sensors for 
stationary sources in mineral industries as gravimetric sampling 
is limited when dealing with UFPs. The actual concentration 
levels can be higher due to the instable compounds present 
so the use of equipment’s with principles such ELPI+ could 
be adopted in addition to gravimetric sampling.

4 Conclusions

The best regression model found for EDA using 
transformed response was optimal lambda equal to -40 
giving a r-squared equal to 9.49%, F-value of 53.91 (p-value 
of 0) and standard error of 2 mg/Nm3. The most significant 
parameters in the EDA model were air temperature, RH% 
and precipitation, all meteorological parameters. The process 
parameters were at least one-degree order smaller than the 
meteorological ones.

On the other hand, the OSA model designed presented 
a standard error of 0.21mg/Nm3 and r-squared of 45.25%, 
F-value of 425.32 (p-value of 0) equivalent to best models 
found in literature for ambient air application. The most 
relevant parameters in the OSA concentration model were 
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