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Abstract

Determining geological domains to be modeled is one of the first steps in the mineral resource evaluation process. 
Prior knowledge regarding the geology of the deposit is fundamental but, in most cases, not enough for a reasonable 
definition of these domains. A careful statistical analysis of the available data (e.g. geochemical samples) is also of great 
importance. In order to avoid mixing different populations of data, samples with similar characteristics should be grouped 
together. In the context of supervised machine learning, cluster analysis can be especially suited for this matter and there 
are many different algorithms available in the literature. In this paper, two clustering techniques were investigated: the first 
is the k-means algorithm, one of the most widely used methods in machine learning, based on the iterative analysis of the 
statistical distribution, while the other one is based on spatial autocorrelation statistics, which takes into consideration the 
geographic distribution of samples. The choice of the most appropriate technique, as well as the number of domains can be 
challenging when performing cluster analysis, and the evaluation of an expert is still necessary, as the results are subjective.
Keywords: Cluster analysis; Geostatistics; Mineral resources; Mining.

1 Introduction

The modeling of spatially correlated variables 
results from the association between the natural component 
of the earth sciences and the foundations of mathematics 
and statistics, in particular the theory of random functions 
(RF) [1]. Geostatistics [2] involves a set of concepts and 
techniques aimed at characterizing and modeling spatial 
phenomena through the analysis of dispersion of the so called 
‘regionalized variables’, and also evaluating the uncertainties 
of random functions that describe these phenomena on a 
mathematical perspective.

Defining estimation domains is one of the first tasks 
when modeling mineral resources, and one of the most 
important decisions to be made in the entire workflow. A 
poor definition of these domains can lead to the mixing 
of populations, which can lead to bad resource estimates, 
compromising the valuation of grades and tonnages.

A good comprehension of data statistics, along with 
the geology, provides a better understanding of the deposit, 
allowing its subdivision into domains for modeling, which 
is more plausible than dealing with the whole deposit as one 
individual entity. Multivariate techniques can be valuable 
when dealing with this problem. In the field of unsupervised 
machine learning, cluster analysis can be especially suited 

for this matter, since it separates a set of N samples based 
on the relationships between the M available variables.

Cluster analysis can play an important role not only in 
the Earth sciences, but in a variety of topics: social sciences, 
biology, statistics, data mining, among others. Tan et al. [3] 
define cluster analysis as a process that groups data based 
only on their characteristics and relationships. The objective 
is that objects in each cluster are similar to each other and, 
at the same time, different from the objects that belong to 
other clusters. The greater the similarity (or homogeneity) 
within a group, and the difference between groups, the more 
efficient is the clustering process. In exploratory analysis, it 
can be very useful to understand how data can be grouped. 
For example, to define typologies and estimation domains 
in a mineral deposit.

Clustering algorithms have been around since the 
1960’s, when Sokal and Sneath [4] presented the agglomerative 
hierarchical technique for working in the field of taxonomy, 
and MacQueen [5] introduced the k-means algorithm.

However, the application of traditional clustering 
algorithms to geological datasets is quite limited, as these 
techniques are often used to characterize the relationships based 
only on statistical parameters, not taking into consideration 
geological aspects [6].

1Departamento de Engenharia de Minas, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brasil.
2Departamento de Geologia, Instituto de Geociências – IGEO, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brasil.

*Corresponding author: gabrielcm.moreira@gmail.com

A workflow for defining geological domains using 
machine learning and geostatistics

Gabriel de Castro Moreira 1* 
Rudi César Comiotto Modena 1

João Felipe Coimbra Leite Costa 1 
Diego Machado Marques 2

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4646-7971
https://orcid.org/0000-0003-4375-370X


Moreira et al.

2/9Tecnol Metal Mater Min. 2021;18:e2472

clusters in a two-step method. First, a new database is 
generated with local autocorrelation measures for each 
variable, given the direct relationships with data in the 
vicinity. Then the traditional k-means algorithm is applied 
to this new database, so that clusters that have both spatial 
and statistical coherence are defined. The algorithm is 
available on GitHub, hosted in the account mentioned in 
Martin and Boisvert [10].

The techniques were tested on the 2-dimensional 
isotopic Walker Lake dataset [15] with 470 samples, each 
containing values for two continuous variables, V and U. 
Figure  1 shows the spatial distribution of samples, with 
preferential sampling on high-value areas, especially on 
its western portion, where it shows a north-south trend of 
high values.

For clustering, both variables were used and, as the 
order of magnitude matters, and can influence the results, 
they were standardized, according to Equation 1. This way 
they will be on the same basis, with mean equal to zero 
and standard deviation equal to one. These transformations 
are typically performed when applying machine learning 
algorithms.
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where Z is the standardized value, X is the original value, 
m is the mean and s, the standard deviation.

These variable distributions are quite different, as 
shown in the histograms of Figure 2, with U showing a 
considerable higher asymmetry than V. The scatter plot in 
the same figure shows that the variables present positive 
correlation, although not high.

The Q-Q plot is meant to compare the distributions of 
different variables by plotting their corresponding quantiles. 
Figure 3 shows the Q-Q plot of variable V against variable 
U, evidencing, one more time, the considerable difference 
in variable distributions.

To evaluate the clustering configurations, and choose 
the most adequate technique, the following validation 
methods were applied:

I.	 Visual inspection of the geographic distribution of 
samples and scatter plots of the continuous variables, 
colored by clustering code;

II.	 The dual space metrics [10], which accounts for 
the geographic entropy and within clusters sum of 
squares;

III.	Inspection of geographic contiguity of the clusters, 
using the indicators correlograms;

IV.	Contact analysis, which is meant to evaluate the 
behaviour of a variable having the contacts between 
different domains as references.

The measure of the geographic distribution of a given 
configuration of clusters in geographic space, the “spatial 

In the last decades, clustering techniques have 
been applied to spatially-related samples (e.g. Scrucca [7], 
Romary et al. [8], Fouedjio [9], Martin and Boisvert [10]) 
with the objective of developing algorithms that take into 
consideration not only the relationships of samples in 
the multivariate space, but also in the geographic space, 
generating clusters that are spatially contiguous and show 
distinct multivariate properties.

In the context of geology and geostatistics, the geographic 
contiguity of the clusters and the multivariate delineation 
are both important factors for the resulting domains to be 
modeled [11]. According to Martin and Boisvert [10], two 
criteria should be considered when measuring the “goodness” 
of the resulting clusters:

i. The contiguity of the domains in the Cartesian 
(geographic) space;

ii. The separation of populations in the multivariate space.

Although these modern algorithms can divide the 
data into reasonable groups, both in the geographic and 
multivariate space, the choice of the optimal number of 
domains and their validation are still subjective, as already 
stated by Martin [11]. This article addresses this matter, 
applying and further discussing some of the methods that 
can be applied.

Our main objective is to apply two clustering 
algorithms and discuss the difficulties found when choosing 
the best configuration of the clusters. As another important 
contribution, we apply and discuss a method to validate the 
spatial distribution of the clusters based on correlograms 
of the indicators. Formal methods for validating the spatial 
connectivity of the groups are, actually, rarely mentioned 
in the literature, other than just applying a visual inspection 
of the results.

2 Methodology

In this study, two clustering algorithms were applied: 
k-means [5], which is one of the most widely used techniques 
in machine learning, and the autocorrelation based spatial 
clustering algorithm, herein mentioned as “acclus”, from 
Scrucca [7], specially designed for dealing with spatial data.

All clustering methods were applied using the web 
application Jupyter Notebook, with Python 3.6.5 installed 
via Anaconda; processor Intel® i7-3.20Ghz, with 24.0GB 
RAM, Windows 10, 64 bit.

For the execution of k-means, the available algorithm on 
the scikit-learn library [12] was used, with the “k-means ++” 
option as a centroid initialization parameter [13], which 
seeks to maximize the separation between the centroids, 
increasing accuracy and speed.

Based on concepts introduced by Ord and Getis [14] 
for univariate cases, Scrucca [7] applied local autocorrelation 
statistics to generate spatially interconnected multivariate 
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entropy” (H), is calculated using a local window at each 
location and summing it over all locations, according to 
Equation 2.
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where pi,k is the probability of finding category k in the 
local search around the ith location. Lower values of entropy 
indicate higher spatial organization, in other words, greater 
geographic cohesion of clusters.

As for measuring how well each population is separated 
from one another in the multivariate space, Equation 3 
expresses the “within clusters sum of squares” (WCSS):
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Figure 3. Q-Q plot showing the distributions of variables V and U 
plotted against each other.

Figure 1. Sample locations and values for each variable present in the Walker Lake dataset.

Figure 2. Histograms of the variables V and U and scatter plot V × U, colored by a kernel density estimator.
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where ( )ij kjx x−  represents the distance between a given 
sample and its respective cluster centroid. Lower WCSS 
values indicate configurations with more compact groups 
in the multivariate space, as distances between elements 
within each group are smaller.

Each metric is calculated independently for a given 
clustering configuration, but both metrics must be evaluated 
simultaneously to assess spatial clustering [10], which can 
be done by plotting spatial entropy versus WCSS.

Although an important aspect in the clustering of spatial 
data, the formal validation of the geographic distribution of 
the clusters is not typically discussed in the literature and 
here we present a method for this verification by measuring 
the spatial continuity of the clusters (by their indicators 
correlograms). The semivariogram [2] is the standard 
instrument for that purpose, as applied by Modena et al. [16]. 
However, it can be affected by short-distance noise. Thus, 
in this study, we applied the correlogram [17,18], as it is 
standardized and more robust than the semivariogram. A 
binary variable (the indicator) has to be defined, which 
assumes value 1 for samples within a given domain and 0 

for the others. The correlogram of this binary variable was 
then plotted for various lag separations, which was done with 
the commercial software Isatis®. Structured and continuous 
correlograms indicate spatial contiguity of clusters, while 
fragmented clusters results in noisy correlograms, with high 
nugget effects, as will be demonstrated in the illustration 
case that follows.

It was conducted a contact analysis between the 
defined domains. It displays the mean value of a variable 
in each domain as a function of the distance of the samples 
to the contact with another domain.

3 Results and discussions

The k-means and acclus algorithms were applied in 
five different scenarios, each one corresponding to a different 
number of clusters, from two to six. Figures 4 and 5 show 
the results for each clustering algorithm: the location maps 
of the samples colored by cluster code, as well as the scatter 
plots of V x U with points also colored according to the 

Figure 4. Results of the k-means clustering, each map corresponding to a different clustering configuration (different number of clusters, k). At 
the lower part, the scatter plots of the continuous variables, V and U, plotted against each other, also colored by cluster code.



A workflow for defining geological domains using machine learning and geostatistics

5/9Tecnol Metal Mater Min. 2021;18:e2472

clustering codes. It is noticeable how the acclus provides 
more geographically contiguous clusters when compared to 
k-means but, when k = 4 or greater, similarly to k-means, 
acclus also results in fragmented clusters. Through the 
scatter plots it becomes apparent that k-means produces 
more uniformly distributed clusters in the multivariate space.

For verifying spatial connectivity, as well as 
multivariate cohesion, simultaneously, the dual space metrics 
of Martin and Boisvert [10] were applied to the results of 
both algorithms, to each scenario. Results can be observed 
in Figure 6A. Note that the WCSS is consistently lower for 
k-means, which is expected, as this clustering algorithm finds 
the best configuration for clusters in the multivariate space 
only. Conversely, the spatial entropy is lower for the acclus, 
as it accounts for the spatial distribution of the clusters.

There is an inflection point for WCSS when k = 3 for 
both algorithms, especially for acclus, meaning that there is no 
significant change in the within cluster variance from that point on.

For a given configuration to be considered acceptable, 
low values of both WCSS and spatial entropy are desirable. 
However, these two metrics are inversely proportional, as 

Figure 5. Results of the acclus algorithm, each map corresponding to a different clustering configuration (different number of clusters, k). At 
the lower part, the scatter plots of the continuous variables, V and U, plotted against each other, also colored by cluster code.

exposed in Figure 6B, that is, greater cohesion in the multivariate 
space implies in geographical fragmentation of clusters.

Thus, considering the dual space metrics, for a given 
level of multivariate ordering (WCSS), a clustering with the 
lowest spatial entropy is preferred; therefore, the acclus is a 
better choice over k-means. Furthermore, the inflection point 
when k = 3 suggests that this could be an appropriate choice.

Also for validating the choice of k we used the measurement 
of spatial continuity of the clusters through the omnidirectional 
correlograms of the indicators of the acclus codes, which are 
presented in Figures 7 and 8, for k = 2 and k = 3, respectively.

Both correlograms in Figure 7, related to domains 
0 and 1 respectively, show “good” structure, attesting 
an acceptable geographic continuity of the clusters. It is 
noticeable that those correlograms are identical, as they are 
complementary, that is, the clusters are equivalent.

Figure 8 shows the correlograms of the indicators 
for domains 0, 1 and 2 in the three-domain scenario and, 
as can be noted, the correlograms of domains 0 and 3 
are not satisfactory, given that they present considerably 
high nugget effects. Thus, although this is the suggested 
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Figure 6. (A) The variations of the scores of the dual space metrics: within cluster sum of squares (WCSS) and spatial entropy (H), as the 
number of clusters (k) changes; (B) The same metrics plotted against each other for each clustering configuration; the numbers indicate the 
corresponding k.

Figure 7. Omnidirectional correlograms of domains 0 and 1, in the two domains scenario.

Figure 8. Omnidirectional correlograms of domains 0, 1 and 2, in the three domains scenario.
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Figure 9. Location maps of the configurations resulting from the acclus algorithm for the two (left) and three (right) domains scenarios, including 
domain contours, manually drawn. Note that clustering into three domains results in scattered groups.

Figure 10. Boxplots showing the statistical distributions of V and U in each domain.

configuration as the most appropriate by statistical analysis, 
data segmentation into three domains does not present 
suitable spatial connectivity, but rather geographically 
fragmented clusters, as seen in Figure 9, which shows the 
location maps for the two- and three-domain scenarios, 
including the contours of these domains, manually drawn. 
Note that, in the three-domain scenario, there are many 
samples that belong to a particular cluster located within 
another cluster, unlike the other case, with very few 
samples in this condition. Therefore, the two-domain 
scenario seems to be the most appropriate in this case. The 

boxplots from Figure 10 show the statistical distributions 
in each domain.

Lastly, the contact analysis between the domains in 
the two-domain scenario was performed and, as it can be 
observed in Figure 11, there is a considerable difference of 
the mean values from samples separated by a certain distance 
(represented by the red lines) from the contact, for both 
variables. Note that there are samples almost up to 100m 
from the contact in domain 1 and above 110m for domain 
0, which indicates that there is considerable geographic 
connectivity within each of these domains.
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Figure 11. Contact analysis between domains 0 and 1 for variables V (left) and U (right). The red lines show the variation of the mean values 
from samples separated by a certain distance from the contact, which is represented by the black vertical line at the center of each plot. The 
dashed horizontal lines represent the overall mean values of each domain.

4 Conclusions

Although very effective and one of the most used 
algorithms in machine learning, the application of the 
traditional k-means is quite limited in geological modeling, 
as it only considers data distribution in the multivariate space, 
which can produce geographically fragmented clusters. A 
more adequate approach is to account also for the geographic 
distribution of samples, which is done by some modern 
clustering techniques, such as the local autocorrelation-based 
clustering algorithm applied in this study. Results of the 
case study described herein corroborate with this statement.

Defining the number of groups and validating the 
results are not trivial, and should be done with great care, 
so that there is no mixing of statistical populations and 
that there are not too many clusters, which can result in 
geographically fragmented domains. This would naturally 
lead to unnecessary complications in the subsequent steps for 
the resource modeling workflow, such as contour modeling, 
estimation and simulation.

The illustration case is a satisfactory example for 
the application of the suggested methodology, which can 
be used in virtually any context, including complex mineral 
deposits with many variables. A full geological model can 
be built after defining the contours around the designated 
clusters (as illustrated in Figure 9). Variographic modeling 
of the variables to be estimated follows, and then, the 

grade-estimation, usually done by ordinary kriging (other 
interpolation methods can be applied, as well as geostatistical 
simulation). This full-modeling workflow is intended to be 
addressed in a future work.

The applied metrics, along with the proposed method 
of using indicator correlograms for validating the spatial 
distribution of clusters are good techniques when working 
with cluster analysis for resource modeling. Yet, expert 
knowledge and evaluation are still necessary on these 
rather subjective tasks, which still require parameterization 
and validation. We believe that, with the advances on 
machine learning algorithms and their applications on 
mineral resource modeling, these interventions will be 
less important with time.
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