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Abstract

This study aimed at predictive modeling, with Artificial Intelligence (AI), of the mechanical properties of sections 
produced from High Strength and Low Alloy (HSLA) steel, hot-rolled. The models were based on historical data of 
mechanical properties, along with the chemical composition of heats and the parameters of the rolling process. An Auto-
Machine Learning platform was used. This tool can test dozens of algorithms to achieve the lowest error. Simplified models 
were built based on statistical analyses of the database, while expanded models were developed using all available data. 
Despite mathematical precision, the models were developed to be metallurgically coherent with scientific trends. The results 
aligned well with expected trends in most cases. It was possible to evaluate the isolated effect of variables. The expanded 
models were able to generate predictions with lower statistical errors. Data variability is an important factor for the success 
of predictive models. Such models allow alloy design to be defined with greater precision, leading to reduced production 
costs and a better understanding of the effects of input variables. Data-driven decision-making is enhanced with AI.
Keywords: Artificial Intelligence; Machine learning; HSLA steel; Modelling.

1 Introduction

The rolling process of structural steel sections poses a 
significant challenge in adjusting the chemical composition to 
satisfy the metallurgical properties required by various international 
standards. This challenge stems from understanding the effect 
of process variables on the evolution of properties throughout 
the rolling process. Diverse techniques have been applied to 
model the rolling process, providing predictive capability and 
a comprehensive understanding of the phenomena involved. 
Artificial Intelligence techniques are exceptionally efficient 
in predicting mechanical test results with low error and high 
correlation, often correlating with the metallurgical phenomena. 
Applying machine learning techniques in materials science is 
crucial in accelerating the discovery of novel materials. Over 
time, as materials science research has progressed, a substantial 
and steadily growing amount of data from experimental and 
simulation studies has been gathered [1]. This initiative aims 
to expedite the research cycle and reduce costs by adopting 
high-throughput computing, data-driven methods, big data 
technologies, and more. Methodologically, machine learning 
methods based on data mining are closely linked to applied 
statistics, given that machine learning is a pivotal component of 
data science, primarily focused on statistical data processing [1,2]. 
Machine learning techniques facilitate the establishment of 
associations between composition, microstructure, process, 
and performance, enabling the prediction of new materials with 

exceptional performance in previously unexplored domains—a 
common strategy in materials development [1,2].

Further advancements in materials science have 
led to machine learning techniques based on data-driven 
approaches emerging as a prominent focus in current materials 
research [2-12]. Machine learning excels in identifying 
correlations among multiple data points, making them 
practical for addressing multivariate nonlinear problems and 
establishing accurate prediction models based on existing 
data [13]. Using multi-objective optimization methods 
alongside neural network adjustments to reduce prediction 
error and average temperature difference has resulted in a 
model with enhanced predictability [14]. Applying Genetic 
Algorithms (GA) has made the alloy discovery and optimization 
process computationally more affordable [15]. Advances in 
microstructural observations facilitated by AI technology 
have paved the way for the automatic recognition of steel 
microstructures. This represents a significant development 
in understanding and controlling steel microstructures, 
offering an effective tool for researchers [16]. Automated 
Machine Learning, or Auto-ML, refers to tools and services 
that simplify the technical details and expertise needed to 
implement machine learning, automating essential ML 
tasks. Typically, these tasks include data normalization, 
feature engineering, training diverse types of models with 
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2.3 Models development

A total of six different models were built, comprising 
three simplified models and three expanded models. The output 
variables for all models are YS, TS, and E. The simplified 
models used a limited set of process parameters (YS, TS, 
E, %C, %Mn, %Si, %S, %Cr, %Nb, %N, Final Rolling 
Temperature (TFL) in °C, and total rolling reduction (%)), 
while the expanded models utilized all available data (YS, 
TS, E, %C, %Mn, %Si, %P, %S, %Cu, %Ti, %Cr, %Ni, 
%Nb, %Mo, %V, %B, %Al, %Sn, %W, %Zr, %As, %Ca, 
%Co, %Sb, %N, %Te, Final Rolling Temperature (TFL), 
and total rolling reduction (%)). The goal was to determine if 
simplified models, though less complex, could yield superior 
results regarding correlation and mean errors. Regressive 
models were employed using cross-validation with k-fold 
(using randomized subsets from the training data to reduce 
training bias) set to 5, on a dataset partitioned into 90% 
training and 10% testing. The mean absolute percentage error 
(MAPE) was used as the error metric. With the advantage 
of Auto-ML software, data quality verification and feature 
engineering steps were conducted automatically [18]. 
All modeling stages were visualized, both in descriptive 
and predictive parts, with adjustment curves and residual 
analysis also performed.

2.4 Selection of model parameters

• Simplified Models: The selection of input variables 
was based on the correlation analysis between these 
and the output variables (YS, TS, and E), involving 
the construction of a correlation matrix, evaluation of 
the obtained correlation coefficients, and elimination 
of chemical elements deemed residual. After this 
step and the elimination of the outliers, a database 
was obtained with 461 occurrences of the variables 
indicated in Table 1(a).

• Expanded Models: The variables shown in Table 1(b) 
were used in conjunction with the variables shown 
in Table 1(a) to construct this model:

2.5 Architecture of the AI models

DataRobot software was used, which is market-leading 
commercial software according to the Gartner quadrant, as 
it is one of the partner companies of the A10 consultancy 
that supported the completion of this work. The software in 
question provides easy use of the most advanced resources 
regarding the use of Machine Learning models for structured 
and unstructured data, through Auto Machine Learning with 
just a few clicks, maximizing the time and results ratio. 
The Data-Robot® Auto-ML tool features model competition, 
enabling functions such as mixing models (Blend Models) and 
modeling in parallel with different families of models. This 

varying hyperparameters, and evaluating and comparing 
results. Auto-ML aims to democratize access to analytical 
tools for non-data scientists by providing tools that require 
little to no code [17,18].

The present work focuses on modeling the relationship 
between the tensile test results, Yield Strength (YS), Tensile 
Strength (TS), and Elongation (E), of hot-rolled HSLA steel 
sections, which serve as the models’ output data, and the 
chemical composition data and rolling parameters. The training 
process utilized historical tensile test data as input for the model.

2 Materials and methods

2.1 The steel section

A High Strength Low Alloy (HSLA) steel section 
with a nominal thickness of 11.00 mm was selected for the 
following characteristics:

• Tensile test samples taken from the flange, resulting 
in lower variability of results.

• A high number of tests were conducted following the 
ASTM A572/A572M-21e1 (Standard Specification 
for High-Strength Low-Alloy Columbium-Vanadium 
Structural Steel) [19]. For the present study, 461 sets 
of results were used.

The following information was utilized in developing 
predictive models of mechanical properties: chemical 
composition, final rolling temperature on the beam flange, 
the thickness of the test specimen as measured, and historical 
data for tensile strength (TS), yield strength (YS), and 
elongation (E). To calculate the percentage of total rolling 
reduction, the initial thickness was defined as the thickness 
of the cast raw material in the flange (Equation 1).

( )
Reduction 100

−
=

f i

i

E E
% *

E
 (1)

In this equation, Ef denotes the final thickness of the rolled section 
measured at the sampling location, and Ei denotes the initial 
thickness of the cast raw material, specifically a beam blank.

2.2 Database statistical treatment

The following analyses and actions were performed 
to ensure data reliability in the database and final models. 
Approximately 5% of the data were considered as outliers 
or non-representative data and were therefore eliminated 
from the final database.

• Correlation analysis between input variables and 
output variables.

• Data Treatment: Limiting data within a range of ±3 
standard deviations and eliminating outliers.
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architecture allowed for the optimal results to be obtained in 
just a few minutes. The adjustment of missing data had already 
been carried out automatically, and following the widely 
used modeling methodology (cross-validation), appropriate 
metrics were achieved for models in applications found in 
the literature and academic works, as noted in the master’s 
thesis of one of the authors. Figure 1 illustrates the high-level 
end-to-end procedure for fitting the model, encompassing 
pre-processing, algorithmic, and post-processing steps. 
It illustrates the various steps transforming input predictors 
and targets into models. Each element (or ‘node’) in the 
blueprint may represent multiple steps.

The following elements connect to create the blueprint:

• Imputation of Missing Values: For numeric features, 
missing value rows are credited with the median of 
the existing data;

• Smooth Ridit Transform: This method replaces the 
categories of an ordinal variable with scores between 
-1 and 1. It aims to reduce complex mass data to a 
more straightforward form, allowing researchers to 
visualize the data and answer the research question 
more simply;

• Keras Deep Residual Neural Network Regressor 
(KDRNNR) uses a training schedule with three layers 
(512, 64, 64 units): Keras is a high-level library 
for building neural networks with the TensorFlow 
framework. Keras provides flexibility for rapidly 

incorporating state-of-the-art deep learning models 
into Auto-ML. It supports sparse data, especially 
for text-heavy or high-cardinality categorical data.

2.6 Training of the models: expanded TS model

The blue ‘Forecast’ line in the Lift Chart (Figure 2a) 
displays the average prediction score for the rows in that bin. 
The orange ‘Actual’ line displays the actual percentage of 
the lines in that bin. A strong correlation between these two 
lines signifies the model’s predictive accuracy. Additionally, 
a steadily increasing line indicates satisfactory model 
performance. Figure 2b illustrates the impact of several product 
and process variables on the TS parameter. The variables 
that impact TS the most are %C, %Mn, %Al, %Nb, %Ti, 
and Total Rolling Reduction (%). Mn has approximately 
60% of the influence of C. The variables with the least 
impact on TS are %S, %Cu, %N, %Si, and %P. These results 
align with metallurgical expectations. Figure 2c presents 
the Matrix Plot, which shows the association between the 
process variables (input and output data). A higher opacity in 
a pair indicates a weaker association between the variables, 
while a lower opacity indicates a stronger association. TS is 
strongly associated with Al, C, Cr, Mn, N, Nb, P, S, Si, Mo, 
Ni, Ti, V, As, and Sn.

The correlation between the real TS and the calculated 
TS was 0.7698. The average percentage error between the 
real TS and the simulated TS values was 1.11%.

Table 1. The input and output variables (YS, TS, and E) included in the simplified models (a) and the expanded models (b)

Variable Description (a) Variable Description (b)
Y1 YS, MPa: Yield Strength X10 P, %
Y2 TS, MPa: Tensile Strength X11 Cu, %
Y3 E, %: Elongation X12 Mo, %
X1 C, % X13 V, %
X2 Mn, % X14 Al, %
X3 Si, % X15 Sn, %
X4 S, % X16 Ti, %
X5 Cr, % X17 Ni, %
X6 Nb, % X18 Co, %
X7 N2, % X19 Sb, %
X8 Final Rolling Temperature (TFL), ºC X20 Zr, %
X9 Total Rolling Reduction, % X21 As, %

X22 Te, %
X23 B, %
X24 Ca, %
X25 W, %

Figure 1. Blueprint for the expanded TS Model, illustrating the model’s architecture and processes.
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3 Results

3.1 Influence of input variables on output variables

The impact of input variables, including each 
chemical element and process parameter, on YS, TS, and 
E was assessed. This assessment was performed using 
partial dependence plots (Figure 3), which illustrate the 
average partial relationship between a set of predictors 
and the predicted output. The yellow partial dependence 
data indicate the marginal effect of a feature on the target 
variable, after accounting for the average effects of all 
other predictive features. This indicates how the value of 
this feature affects the prediction while keeping all other 
variables constant. The figure below presents examples of 
these plots specifically for the expanded TS model:

3.2 Comparison of model performance metrics

Table 2 compares the output variables (TS, YS, and 
E) between simplified and expanded models.

The expanded model demonstrates superior results 
for most of the evaluated statistical parameters, particularly 
regarding the correlation coefficients and standard deviation. 
The R2 values   for elongation are considerably lower 
when compared to the YS and TS values. The method of 
obtaining elongation, since it depends on a manual procedure 

(measurement of the total length of the test specimen after 
rupture), is subject to numerous factors, such as operator skill, 
calibration of the measuring equipment, and perfect fit of 
the ruptured segments of the test specimen. For this reason, 
there is greater variability in the elongation data obtained.

4 Discussions

The partial dependence plots shown in Figure 3 provide 
interesting information regarding how each input variable 
impacts the output variables YS, TS, and E. Table 3 interprets 
these plots specifically for TS.

Table 3(a) shows the impact of the input variables 
on the output variable TS. Input variables, such as C, Mn, 
Nb, Final Rolling Temperature (TFL), and Total Rolling 
Reduction, significantly influence on the output variable. 
Table 3(b) presents the analysis results of the variables’ 
influence (or impact) on TS for the expanded model and 
whether this influence aligns with the available technical 
literature. For instance, in microalloyed steels, microalloying 
elements such as niobium can interact with the movement of 
austenite grain boundaries in two diverse ways. Firstly, the 
dispersion of Nb-containing precipitates exerts a retarding 
pressure on the grain boundaries, which has a pronounced 
effect on the growth of the austenitic grain. The magnitude 

Figure 2. Training results for the expanded TS Model: (a) Lift Chart, (b) Variable Impact, (c) Matrix Plot. In these plots, LR has the same 
meaning as TS (Tensile Strength).



Use of auto machine learning, artificial intelligence, for predictive modeling of metallurgical properties of hot-rolled steel products

5/8Tecnol Metal Mater Min., São Paulo, 2025;22:e3149

of this effect depends on the size, shape, and volume fraction 
of these precipitates, typically Nb(C,N) or Nb carbonitrides.

Secondly, a moving interface drags an atmosphere 
of solute elements, which exerts a retarding force on this 

interface. Thus, elements in solution can significantly reduce 
the mobility of austenitic grain boundaries.

This phenomenon is known as the solute drag 
effect [20]. Both phenomena collaborate to increase TS 

Figure 3. (a) to (h): TS Partial Dependence Plots according to: (a) C, %; (b) Mn, %; (c) Si, %; (d) S, %; (e) Zr, %; (f) Nb, %; (g) Total Rolling 
Reduction, %; and (h) Final Rolling Temperature (TFL), °C. In these plots, LR has the same meaning as TS (Tensile Strength).

Table 2. Statistical Comparison between the Simplified and Expanded Models

Model Parameter Residuals Average Correlation Coefficient, R2 Standard Deviation
Simplified YS -0.170 0.627 9.392

TS -0.126 0.709 8.285
E -0.435 0.252 2.615

Expanded YS 0.049 0.678 8.725
TS -0.285 0.770 7.357
E -0.079 0.394 2.384
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when the content of Nb is increased. The TS results for the 
expanded model show that Nb contributes 0.56 MPa for 
every 0.001% addition, aligning with the known resistance 
increase mechanism. In other words, the addition of Nb 
contributes to the increase in mechanical strength. Both the 
expanded model and the simplified model demonstrate this 
trend. According to different authors [21,22], the Zr addition 
plays a dubious role in improving the mechanical resistance 
of steel. The constructed model indicates a reduction in TS 
of 0.09 MPa for each addition of 0.0001% of Zr, noting that 
there was no intentional addition of Zr to this HSLA steel.

The same dataset was subjected to modeling to 
construct predictive models [23], utilizing both Artificial 

Neural Networks and Multiple Linear Regression (MLR). 
The results are presented in Table 4.

The simplified model outperforms the ANN model 
in most cases, except for variable E, where the ANN yielded 
superior results. Additionally, the expanded model performs 
better than the simplified model across all output parameters.

5 Conclusions

• The Auto-ML tool enables virtual alloy design 
before actual production, reducing both the product 

Table 3. (a) Impact of the Input Variables on Tensile Strength (TS); (b) Alignment of the Impact with Technical Literature for TS

Input Variables
TS, MPa

(a)
TS Analysis for the Expanded Model

(b)
Simplified Expanded Alloy-Design 

Range, %
Impact, 

MPa Literature aligned?

C, % ↑ ↑ 0.01 5.00 Yes!
Mn, % ↑ ↑ 0.01 0.60 Yes!
Si, % ↑ ↗ 0.01 0.62 Yes!
P, % - ↗ 0.001 0.17 Yes!
S, % ➔ ↘ 0.001 -0.17 Yes!

Cu, % - ➔ 0.001 0.00 No (Residual)!
Ti, % - ↘ 0.0001 -0.16 No (Residual)!
Cr, % ↘ ↘ 0.001 -0.07 Yes (Residual)!
Ni, % - ↓ 0.001 -0.17 No (Residual)!
Nb, % ↗ ↑ 0.001 0.56 Yes!
Mo, % - ↗ 0.001 0.21 Yes (Residual)!
V, % - ↗ 0.0001 0.21 Yes (Residual)!
B, % - ↘ 0.00001 -0.10 No (Residual)!
Al, % - ↑ 0.001 0.24 Yes!
Sn, % - ↓ 0.0001 -0.11 Yes (Residual)!
W, % - ➔ 0.001 0.67 Yes (Residual)!
Zr, % - ↘ 0.0001 -0.09 No (Residual)!
As, % - ➔ 0.0001 0.05 No (Residual)!
Ca, % - ➔ 0.0001 0.14 Yes (Residual)!
Co, % - ↗ 0.001 0.45 Yes (Residual)!
Sb, % - - 0.001 0.00 ?
N, % ↗ ↗ 0.001 0.29 Yes (Residual)!
Te, % - ↘ 0.0001 -0.17 ?

TFL, °C ↑ ↑ 1 0.04 Yes!
Redução, % ↑ ↑ 0.1 0.58 Yes!

Table 4. Average prediction error for each model. algorithm, and output variable

Model Info
Output Parameters

YS TS E
Expanded Model Average error, % 1.65 1.11 6.36

Algorithm eXtreme G. Boost KDRNNR, 3 Layers Adaboost A
Simplified Model Average error, % 1.89 1.33 6.41

Algorithm eXtreme G. Boost eXtreme G. Boost eXtreme G. Boost
ANN (MatLab) Average error, % 2.26 1.57 4.76

Algorithm ANN, 3 Layers ANN, 3 Layers ANN, 3 Layers
MLR Average error, % 2.27 1.73 4.86

Algorithm MLR (Excel) MLR (Excel) MLR (Excel)



Use of auto machine learning, artificial intelligence, for predictive modeling of metallurgical properties of hot-rolled steel products

7/8Tecnol Metal Mater Min., São Paulo, 2025;22:e3149

development cycle and total costs. This approach 
minimizes heat disqualifications that can arise from 
design errors during research;

• The models are strongly aligned with metallurgical 
trends and reflect previously observed patterns from 
the statistical analyses. They can be used to isolate 
the effects of individual variables;

• The expanded model, utilizing most available data, 
achieved lower mean errors and higher correlation 
coefficients in its predictions;

• In comparison with simulations using other algorithms, 
the Auto-ML models exhibited greater accuracy, with 
lower error rates and higher correlations (specifically 
in the expanded model);

• The tool verified the influence of all input variables 
on the final results. It can recognize new patterns 
across a broad range of input variables, showcasing 
the potential to explore unknown relationships 
and facilitating innovative approaches for product 
development and research;

• While the current database contains many variables, 
it lacks critical ones, including reductions based on 
the pass schedule, interpass times, temperatures for 
each rolling pass, and cooling rates post-rolling.

The Automated Machine Learning (Auto-ML) 
tool is a strategic asset for alloy design, particularly for 
structural applications and other steel-based products. 
This tool streamlines research and development (R&D) 
by simulating various alloy design scenarios in a virtual 
environment, allowing for process optimization before 
production begins. By conducting virtual production trials 
before physical implementation, significant reductions in 
development costs and project lead times are possible. 
The empirical models demonstrate commendable predictive 
accuracy, evidenced by minimal prediction errors (less than 
2% for both YS and TS). As a result, these models play 
a pivotal role in data-driven decision-making processes, 
fostering innovation and substantial cost savings within 
the steel industry.
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