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Abstract

The interactions of different alloying elements in metallic alloys, combined with the application of thermal cycles 
and/or welding operations, have a significant impact on the microstructural characteristics and mechanical properties of 
materials. Continuous cooling transformation (CCT) diagrams, typically obtained through dilatometric tests, describe 
phase transformations in specific alloys during thermal cycling. However, this methodology requires long processing 
times, specialized equipment, and expertise, making it unsuitable for fast decision-making. This work presents a Machine 
Learning-based model, developed and validated to predict austenite decomposition during continuous cooling, using a 
dataset of experimental CCT diagrams of different weld metals available in the literature. The results demonstrate that 
the CCT diagrams predicted by the Machine Learning approach can be used as a promising tool to assist in studying 
microstructural changes occurring during the continuous cooling of weld metals. Moreover, this method can complement 
dilatometric analysis, reducing experimental time and costs while providing fast and accurate responses that could support 
the development of welding procedures.
Keywords: CCT Diagrams; Weld metal; Machine learning.

1 Introduction

The influence of fusion joining processes, particularly 
electric arc welding, on microstructural variations has been 
extensively evaluated in research studies, as it is one of the 
main factors affecting the mechanical properties of welded 
components. The extent and intensity of microstructural 
changes depend on, among other factors, the chemical 
composition of the materials and, most importantly, on the 
thermal cycles generated during the welding process [1-5]. 
Dilatometry is one of the techniques used to assess the effects 
of different thermal cycles on microstructural transformations 
by analyzing dimensional changes in test specimens. This 
method enables the determination of critical transformation 
temperatures, among other characteristics, allowing the 
construction of continuous cooling transformation (CCT) 
diagrams for different kinds of materials [6-10]. With a CCT 
diagram, it is possible to predict the effect of a given cooling 
rate on the transformation start and finish temperatures and/
or the fraction of a specific microconstituent formed.

Although numerous CCT diagrams are available in the 
literature, few are directly applicable to welding studies due to 
two main limitations: (i) the slow heating rates typically used, 
generally below 5 ºC/s, and (ii) the use of low austenitization 
temperatures, which result in smaller austenitic grain sizes than 
those usually observed in welded regions, particularly in the 

weld metal and the coarse-grained region of the heat-affected 
zone [1-5,11]. Moreover, the application of this technique 
remains highly restricted due to the need for specialized 
equipment, such as the Gleeble and dilatometers, as well as 
expert knowledge and a relatively long testing time. As a result, 
it may not be the most suitable tool for rapid decision-making 
in material development and application.

For weld metals specifically, predicting the temperatures 
at which austenite starts and finishes transforming during 
continuous cooling is even more critical than understanding the 
transformations of individual microconstituents. Issues such 
as the susceptibility to hydrogen-induced cold cracking, the 
occurrence of solidification cracks, the formation of residual 
stress fields, and the development of brittle microstructures 
are all directly related to variations in the temperature range 
at which austenite decomposition occurs during the cooling 
of the welded joint [1-5,12,13].

Therefore, to assist in determining the optimal welding 
conditions, it is essential to have prior knowledge of the CCT 
diagrams of weld metals used in the production of critical 
components with stringent requirements, such as offshore 
structures, pressure vessels, military vehicles, and aerospace 
and nuclear equipment [14-16]. The transformation curves of 
CCT diagrams depend on the chemical composition of the 
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2 Methodology

2.1 Database construction

Figure 1 presents a flowchart illustrating the entire 
database construction process. The database for this study 
was developed based on 68 CCT diagrams of different weld 
metal types, 56 of which were extracted from the work of 
Zhang and Farrar [39], who compiled various results from the 
literature into an atlas. Additionally, 12 more CCT diagrams 
were obtained from the studies of Ito et al. [40,41].

Figure 2 provides examples of the diagrams used in 
this work. As shown in this figure, the diagrams are graphical 
representations of transformation temperature variation curves 
as a function of cooling time. To construct the database for 
model development, each CCT diagram was digitized and 
processed using the free software WebPlotDigitizer [42].

This tool enabled the extraction of transformation 
temperatures (T°T) and cooling times (tR). Through this 
procedure, 2813 data pairs were obtained for the start of 
austenite transformation and 2690 data pairs for the finish 
of austenite transformation. Additionally, the chemical 
composition data associated with each diagram were collected. 
Table 1 presents examples of the chemical compositions of 
some selected alloys, along with the range of each element’s 
content, based on the entire evaluated database. Notably, the 
modeling was carried out considering the collective range 
of each element, without clustering, due to limited data 
availability for some alloys. Thus, the input parameters for 
the models included chemical composition, austenitization 
temperature (AT), and cooling rate (Rate), which was calculated 
based on the tR for a given T°T and AT, following Equation 
1 [38]. The transformation temperatures at different cooling 
rates served as the output data for the models.

( ) /Rate AT T T tR= − °  (1)

2.2 Modeling with different machine 
learning algorithms

Figure 3 presents a flowchart illustrating the steps used 
to predict CCT diagrams using the machine learning model.

metal alloy and the austenitic grain size subjected to cooling, 
which, in turn, is influenced by the austenitization temperature 
and holding time. Currently, as previously mentioned, CCT 
diagrams can be determined through physical simulation. 
However, this approach requires significant investment and time.

An alternative methodology involves using empirical 
equations or mathematical models to calculate transformation 
temperatures, enabling the construction of CCT diagrams [17-20]. 
These models consider grain size, austenitization temperature, 
effective diffusion coefficients, cooling rate, and specific 
coefficients for each chemical element in the alloy. Such 
equations serve as the foundation for software dedicated to 
studying microstructural transformations [21]. However, 
theoretical and mathematical models cannot precisely 
calculate transformation temperatures due to their inherent 
non-linearity [22].

As a result, a third method that has gained significant 
recognition in recent years for evaluating phase transformations 
in metal alloys and thus determining CCT diagrams is the 
application of machine learning techniques, artificial neural 
networks (ANNs), and statistical models. Machine learning 
models excel at identifying correlations among multiple 
variables under non-linear conditions, enabling highly 
accurate predictions. Owing to their low dependence on 
expensive software or high-performance computing systems 
and primarily due to their ease of implementation machine 
learning techniques have been widely applied to solve various 
industrial challenges, support materials design, and assist 
in the development of new alloys [23-27].

These approaches enable the prediction, modeling, 
and analysis of non-linear transformation curves based on 
a database of experimental CCT diagrams, allowing the 
evaluation of the influence of alloying elements and their 
interactions on the transformation kinetics [28–38]. In this 
study, models were developed and validated for predicting 
the start and finish temperatures of austenite transformation 
during the cooling of different types of weld metals. To 
achieve this, various machine learning model (MML) 
strategies were assessed, and the most suitable algorithms 
for this application were determined through a comparative 
analysis of correlation coefficients and mean absolute error 
(MAE) and root mean squared error (RMSE) values.

Figure 1. Diagram illustrating the main steps for creating the MML.
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During the training phase of this study, different 
algorithms were tested to determine those best suited for 
predicting CCT diagrams. The following models were 
evaluated: General Linear Regression (GLM), Elastic Net 
Regression (GLMNET), k-Nearest Neighbors (KNN), Random 
Forest (RF), Support Vector Machine (SVM), Decision 
Trees-Rule-Based Cubist (CUBIST), and Extreme Gradient 
Boosting (XGB) [43-45]. Among these, KNN stands out as 

a simple yet widely applied algorithm for various regression 
problems. In KNN regression, the predicted output is the 
average value of the k nearest neighbors [43-45].

As an ensemble decision tree algorithm, RF builds 
multiple statistical approximations to develop a predictive 
model. It offers superior computational accuracy compared to 
most individual algorithms and, due to its inherent randomness, 
demonstrates strong generalization capabilities and resistance 

Figure 2. Example of diagrams used in this work.

Table 1. Example of the chemical composition of some alloys used in this work and the range of each element (wt.%)

C Mn Si S P Cu N O Ni Cr Mo Ti Al B Nb V CE Pcm
CMn 0.06 0.56 0.41 0.008 0.023 0.04 0.007 0.041 0.05 --- --- --- --- --- --- --- 0.18 0.10

CMnNi 0.04 1.20 0.41 0.014 0.024 0.05 0.012 0.043 1.10 0.01 0.07 --- --- --- 0.01 --- 0.35 0.16
CMnNiMo 0.06 1.50 0.37 0.009 0.015 0.06 0.005 0.020 0.96 0.01 0.23 0.018 0.003 --- --- --- 0.43 0.18

CMnSi 0.11 0.74 0.09 0.013 0.016 0.12 0.005 0.071 0.03 0.00 --- --- --- --- --- --- 0.25 0.16
Minimum 0.02 0.56 0.09 0.005 0.002 --- --- --- --- --- --- --- --- --- --- --- 0.16 0.09
Maximum 0.12 2.10 0.67 0.025 0.030 0.46 0.031 0.114 5.53 0.35 0.45 0.050 0.060 0.0045 0.03 0.11 0.59 0.22
CE = C + Mn/6 + (Ni + Cu)/15 + (Cr + Mo + V)/5; Pcm = C + Si/30 + (Mn + Cu + Cr)/20 + Ni/60 + Mo/15 + V/10 + 5B.
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to overfitting. This makes it particularly suitable for handling 
complex nonlinear multivariate problems without requiring 
explicit feature selection [43-45].

Overfitting during training is often as significant as 
the performance differences between learning algorithms 
and, therefore, cannot be ignored in an empirical evaluation. 
To mitigate overfitting in nonlinear regression problems and 
maximize data usage, k-fold cross-validation was applied. 
In this method, the original dataset is randomly divided 
into k equal-sized subsamples. Of these, one subsample is 
retained for model validation, while the remaining (k – 1) 
subsamples are used for training. This process is repeated 
k times, ensuring that each subsample is used exactly once 
for validation. The final performance metric is obtained by 
averaging the results from all k iterations. A key advantage 
of this approach is that all observations are utilized for both 
training and validation, enhancing model robustness.

The literature suggests that stratified cross-validation 
with 10 to 20 folds is optimal for model selection, even 
when computational resources allow for more subsets [46]. 
Consequently, in this study, k = 20 was used.

Following this, the different models were trained 
to predict the start and finish temperatures of austenite 
transformation. To quantitatively assess the regression 
performance, the R2 (coefficient of determination) and error 
metrics were computed. It’s a well-known fact that the R2 
value ranges from 0 to 1, with values closer to 1 indicating 
better correlation. Generally, a model is considered highly 
correlated when R2 > 0.8 [45]. Additionally, the mean absolute 
error and root mean squared error were used to evaluate 
and compare prediction quality among the models [43-45].

Thus, the lower the MAE and RMSE values and 
the higher the R2 value, the more consistent and accurate 
the predicted transformation temperatures will be across 
different cooling rates.

After preprocessing, each dataset corresponded to a 
CCT diagram with 15 numerical attributes (features). The 
qualitative relationship between the transformation start 
(Temp_i) and finish (Temp_f) temperatures and the selected 
features can be described by Expressions 2 and 3. To evaluate 
the machine learning procedure, data from five CCT diagrams, 
which were not included in the training phase, were set aside 
for validation, while the remaining dataset was split into 80% 
for training and 20% for testing. Additionally, all data were 
centered and normalized before training.

( )_ , , , , , , , , , , , , , ,cmTemp i F C Mn Si O N S P Cu Mo Ni Al Ti CE P Rate=  (2)

( )_ , , , , , , , , , , , , , ,cmTemp f F C Mn Si O N S P Cu Mo Ni Al Ti CE P Rate=  (3)

3 Results and discussion

3.1 Data evaluation

Although austenitic grain size, austenitization time, 
and heating rate are essential variables for determining 
transformation temperatures, these parameters were not 
considered in this evaluation due to the lack of information 
in several diagrams, as shown in Figure 4.

Prior to training the models, a comprehensive 
assessment of the entire database was conducted. Data 

Figure 3. Steps Used To Predict CCT Diagrams Via Machine Learning.
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deemed incorrect or anomalous were removed from the 
training dataset based on prior knowledge of dilatometric 
tests and principles of physical and welding metallurgy. 
However, while this database adjustment was necessary, 
the exclusion of these variables may represent a limitation 
of the models presented in this study.

To verify the consistency of the data, Pearson 
correlation graphs were generated, as shown in Figure 5a, 
to assess the collinearity among the variables.

In general, as expected, most alloying elements 
inversely affect the Temp_i and Temp_f, lowering them as 

their content increases. This behavior is attributed to the 
increased hardenability of the alloys.

The cooling rate (Rate) also exhibits an inverse 
correlation with Temp_i and Temp_f, which is consistent 
with the well-established understanding that more severe 
cooling promotes the formation of low-temperature 
transformation constituents [47-49]. An intriguing result 
is the strong effect of oxygen, which appears to increase 
Temp_i and Temp_f. This phenomenon is believed to be 
associated with heterogeneous nucleation occurring during 
weld metal solidification due to the presence of globular 

Figure 4. Some examples of the diagrams used in the construction of the database. The red arrows indicate the differences found in the diagrams [39].

Figure 5. Pearson correlation map (a), participation of alloy elements (b) and distribution of alloy types (c) in the database used.
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oxides. This strategy is commonly used to promote acicular 
microstructures and grain refinement, thereby facilitating 
austenitic transformation at higher temperatures [1-5,40,41].

Figure 5b illustrates the distribution of alloying 
elements in the database. As expected, the alloys are primarily 
composed of C, Mn, and Si, given that these elements are 
fundamental in welding carbon and low-alloy steels. Another 
notable observation is that reductions in carbon content tend 
to be compensated by increased additions of Mn, Si, Ni, and 
Mo, a strategy commonly employed to balance the effects 
of carbon in the design of high-strength steel alloys [47-49]. 
However, other alloying elements, such as V, Nb, Cr, and 
B, are less represented in the dataset. For this reason, they 
were excluded from the training stage due to their limited 
presence, particularly the element B, which significantly 
affects the transformation temperatures [47-49].

This limited presence of certain elements can be 
attributed to multiple factors: (i) some alloy designs may not 
include specific elements in their composition, and/or (ii) 
certain elements may have been omitted or undetected due 
to the analytical techniques used, meaning their absence in 
the database does not necessarily imply that they are absent 
in the actual weld metals. Another important aspect is the 
type of alloy studied.

As shown in Figure 5c, nearly half of the dataset consists 
of C-Mn-Ni alloys, indicating that the model developed in this 
study is best suited for predicting transformation behaviors in 
these types of alloys. A limited dataset for specific elements 
can significantly impact the performance of a machine learning 

model, potentially leading to: (i) Overfitting in dominant 
variables, (ii) Underfitting for variables with low representation, 
(iii) Less reliable predictions, and (iv) Imbalance and bias in 
the model. Since additional CCT diagrams for weld metals 
could not be obtained from the literature to enrich the dataset 
with underrepresented elements, alternative strategies were 
implemented. In addition to overfitting control and regularization 
techniques, robust models capable of handling imbalanced data 
such as decision trees, random forests, and gradient boosting 
were evaluated to enhance prediction reliability.

3.2 Prediction of start and finish 
transformation temperatures

Figure 6 presents a comparison of the MAE and RMSE 
error values obtained for each trained model, considering 
cross-validation. It can be observed that the RF (Random 
Forest), CUBIST, and XGB (Extreme Gradient Boosting) 
models achieved the lowest MAE and RMSE values in 
the training sets for predicting the Temp_i and Temp_f of 
austenite transformation.

Among these, the RF algorithm demonstrated the best 
performance for Temp_i, with a variation of ± 18 °C, while 
XGB was the most accurate for Temp_f, with a variation of ± 
34 °C. These deviations are considered acceptable and are 
commonly observed in dilatometric experimental practice.

Figure 7 presents a comparison of the R2 values 
obtained for each trained model. As with the error metrics, 
the models that achieved the highest R2 values for predicting 

Figure 6. Comparison of algorithms through error values on the training set.

Figure 7. Comparison of algorithms through R2 values on the training set.
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the start (Temp_i) and finish (Temp_f) temperatures were 
RF, CUBIST, and XGB. Among them, XGB exhibited the 
best performance for Temp_i, with R2 = 0.95, while RF 
achieved the highest accuracy for Temp_f, with R2 = 0.96.

Figure 8 illustrates the performance of the best models 
by comparing predicted vs. actual values (or real values). 
Most data points are concentrated near the asymptotic line 
(45° oblique line), indicating a high prediction accuracy of 
the developed models.

As shown in Figure 9, where the effectiveness of 
the KNN model in predicting transformation temperatures 
was evaluated, it is evident that for intermediate times, the 
prediction accuracy deteriorates.

As will be demonstrated later, this issue is linked 
to the quality of the original dataset. Indeed, a preliminary 
evaluation of the models, shown in Figure 10, reveals that 
the dispersion of the difference between predicted and actual 
transformation temperatures (∆T°T) is smaller when using 
XGB and RF compared to KNN and GLM, particularly for 
intermediate temperature ranges.

3.3 Validation

To assess the predictive performance and effectiveness 
of the proposed methodology, the trained model was applied 
to predict the austenite transformation start (Temp_i) 
and finish (Temp_f) temperatures for three types of weld 
metals: one alloy containing only C-Mn, and two others 
with the addition of silicon (C-Mn-Si) and nickel (C-Mn-
Ni). Figure 11 presents the experimental (real) data points 
overlapped on the CCT diagrams predicted by the machine 
learning model (MML). The results indicate that the trained 
MML achieved a good fit for all three weld metal types, with 
predicted transformation temperatures closely matching the 
experimental values.

This agreement is particularly strong for extreme 
conditions, i.e., at the lowest and highest cooling rates, 

and it is especially accurate for the transformation start 
temperature (Temp_i).

From a transformation kinetics perspective, 
occurrences at intermediate temperatures and times are 
the most challenging to determine experimentally and, 
consequently, the most difficult to predict. This is due to 
the nucleation and growth phenomena of microconstituents 
occurring in a mixed manner, involving both displacive and 
reconstructive mechanisms governed by atomic diffusion 
and crystal rearrangement, respectively [47-53].

Additionally, analyzing experimental dilatometric 
curves from which CCT diagrams are constructed is more 
complex for intermediate transformation temperatures. These 
evaluations are more susceptible to human interpretation, 
making them inherently prone to errors compared to the 
determination of low and high transformation temperatures. 
It is important to note that all experimental CCT diagrams 
available in the literature, including those used in this 
study, are constructed manually. In this process, a limited 
number of experimental data points are interpolated to 
form transformation temperature curves as a function of 
cooling time.

Figure 8. Performance of the machine learning models on the training set.

Figure 9. Dispersion of intermediate results in prediction efficiency 
via KNN.
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Figure 10. Comparison between KNN, GLM, XGB and RF models. ∆T°T = real temperature (original CCT) - predicted temperature.

Figure 11. Comparison of the real data with the CCT diagram predicted by the developed machine learning model.



Prediction of start and finish transformation temperatures for different types of weld metals via machine learning

9/12Tecnol Metal Mater Min., São Paulo, 2025;22:e3235

Furthermore, the model exhibited lower prediction 
errors for the C-Mn weld metal, followed by C-Mn-Ni and 
C-Mn-Si. This behavior may be attributed to differences in 
hardenability among the alloys, as well as the composition 
of the training database.

Compared to C-Mn alloys, the C-Mn-Ni and C-Mn-Si 
weld metals, due to their differences in chemical composition, 
are more sensitive to temperature variations, leading to the 
formation of different microconstituents in varying fractions 
at intermediate transformation temperatures [1-5,47-49]. This 
increased heterogeneity in microstructural transformations is 
difficult to detect in dilatometric tests, making transformation 
temperature detection highly dependent on human interpretation 
[47-53]. This introduces greater variability in experimental 
results, directly impacting the training process and predictive 
accuracy of the models.

In particular, for the C-Mn-Si alloy, it is believed that, 
in addition to the effects of chemical composition, the low 
representation of this material system (MS) in the training 
dataset (as shown in Figure 5c) may have negatively affected 
the accuracy of the developed machine learning model. This 
suggests that future studies should focus on expanding the 
training dataset to include more C-Mn-Si alloys. Thus, it 
is evident that MML training is inherently influenced by 
the subjectivity of the training data itself. An alternative 
approach to mitigate this issue in future research is to explore 
the clustering of transformation temperature groups and 
apply different models to predict transformation curves as a 
function of cooling rate variations. Additionally, increasing 
the availability of dilatometric test data could further improve 
model accuracy. However, the errors observed in the MML 
predictions can be considered acceptable deviations, as these 
variations in transformation temperatures are commonly 
encountered in dilatometric experimental practice.

4 Conclusion

This study presents an alternative approach to 
dilatometric thermophysical simulation for evaluating phase 
transformations in weld metals. In this context, different 
machine learning strategies were explored to predict CCT 

diagrams for various types of weld metals, using chemical 
composition data, austenitization temperature, and cooling 
rate as input parameters. For modeling, several algorithms 
were assessed, including General Linear Regression (GLM), 
Elastic Net Regression (GLMNET), k-Nearest Neighbors 
(KNN), Random Forest (RF), Support Vector Machine 
(SVM), Decision Trees-Rule-Based Cubist (CUBIST), 
and Extreme Gradient Boosting (XGB). The most suitable 
models were selected based on a comparative analysis of 
error metrics and R2 values: (i) the RF model was chosen to 
predict the start austenite transformation temperatures during 
cooling e; (ii) the XGB model was selected to predict the 
final austenite transformation temperatures during cooling.

The models were validated, and the generated CCT 
diagrams exhibited acceptable deviations compared to 
experimental (real) results for C-Mn and C-Mn-Ni weld metals.

It is important to emphasize that the performance of 
the developed model is dependent on the training dataset and 
is constrained by the boundary conditions of the available 
data. Therefore, it is expected that the model will provide 
reasonably accurate predictions for weld metals whose 
chemical composition falls within the upper and lower limits 
of each element present in the training set.

Finally, the results of this study demonstrate that machine 
learning techniques provide a powerful computational approach 
for studying microstructural changes during the continuous 
cooling of weld metals. This methodology reduces the time 
and cost associated with dilatometric experiments, while 
also delivering fast and reliable predictions. Consequently, 
it serves as a valuable tool for developing optimized welding 
procedures for critical components with high safety and 
performance requirements, such as pressure vessels and 
military, aerospace, and nuclear applications.
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