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Trade-off between physical and metallurgical
properties of dr iron ore pellets

Jean Philippe Santos Gherardi de Alencar '™

Abstract

This study investigates the trade-off between mechanical strength and metallurgical performance in direct reduction
(DR) iron ore pellets, a critical challenge in pellet design. A statistically structured experimental design was applied to
evaluate the influence of key process parameters - carbon content in green pellets, anthracite particle size, and grate speed - on
compressive strength (CCS) and metallization degree (Met). Physical, metallurgical, and microstructural characterizations
were conducted, including porosity analysis and optical microscopy. Regression models were developed using ordinary
least squares (OLS) to quantify the relationships between process variables and pellet properties. The model for CCS
showed moderate predictive power (R?>= 0.50), while the model for Met demonstrated a strong fit (R? = 0.80), with carbon
content and grate speed emerging as statistically significant predictors. These models revealed a clear inverse correlation
between CCS and Met, indicating that higher mechanical strength, while beneficial for handling and durability, can hinder
gas diffusion and reduce reduction efficiency due to lower porosity and fewer reactive sites. The findings were validated
through industrial-scale basket tests in a Midrex reactor, confirming the laboratory trends and reinforcing the importance
of data-driven strategies for optimizing pellet performance.
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1 Introduction

Iron ore pellets are vital in the steelmaking industry,
serving as a primary feed material for blast furnaces and
direct reduction processes [1]. The efficiency of ironmaking
production is heavily influenced by the properties of these
pellets, which must exhibit a delicate balance between
physical strength and metallurgical behavior [2].

The production of iron ore pellets involves optimizing
various parameters, including pellet feed composition,
fuels and fluxes quality, particle size distribution, and
treatment conditions, to achieve desirable properties [3].
The performance of Direct Reduction (DR) Pellet, for
instance, is governed by two broad categories of properties:
(a) physical/mechanical properties - including cold crushing
strength (CCS), tumble index (TI), abrasion resistance and
porosity; and (b) metallurgical properties - notably reducibility,
degree of metallization (Met), reduction degradation index
(RDI), and behavior under high-temperature reduction.
An enduring trade-off exists: higher mechanical strength
typically correlates with lower internal porosity, impeding
gas diffusion essential for efficient reduction [4-6].

Recent research strongly reinforces that this trade-off
remains a central issue in contemporary pellet technology.
Pal et al. [3] achieved an 8% increase in the reducibility
index (RI) by optimizing induration temperature and additive

sizing, with some impact on CCS. Meanwhile, Li et al. [7]
demonstrated that fine iron filings can improve compressive
strength by reducing pellet porosity but may alter metallurgical
behavior through microstructural changes. Investigations
by Xu et al. [8] into basicity effects revealed a predictable
inverse link between porosity and strength—highlighting
the familiar strength-versus-permeability dilemma.

Furthermore, as the industry pursues decarbonization, new
challenges emerge in hydrogen-based reduction environments.
Ozgiin et al. [9] and Heidari et al. [10] documented how pellet
behavior changes during hydrogen reduction—including
risk of sticking, swelling, or unexpected brittleness—due to
altered diffusion and phase transformations. These studies
reiterate the necessity of maintaining a balanced porosity-
to-strength ratio, even as reduction atmospheres evolve.

Taken collectively, the literature confirms that the
physical versus metallurgical trade-off remains a pressing
challenge. The present work aims to quantify this trade-off
for DR pellets using a statistically structured experimental
design. Our goal was to elucidate how some process
variables—such as carbon content, fuel size, and firing
conditions—influence the dual demands of mechanical
integrity and reduction behavior, thus enabling specification
flexibility grounded in data-driven strategies that benefit
producers and customers alike.
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2 Development

This study aims to develop statistical models that
establish correlations between key process parameters
(grate speed, carbon content in the green pellet, and coal
particle size distribution) and the resulting physical and
metallurgical properties of iron ore pellets. In doing so, it also
seeks to identify and quantify the trade-offs between these
properties as a function of variations in the aforementioned
factors, providing a comprehensive understanding of their
interdependencies and implications for product optimization.

2.1 Characterization of raw materials
used in the project

The pellet feed sample studied was collected from
the Vitoria pelletizing industrial plant and subsequently
characterized at VALE Ferrous Technology Center (CTF).
Table 1 and Figure 1 show the global chemical analysis and
particle size distribution of the pellet feed.

Similarly, the batch of anthracite used in the tests
originated from the Vitdria pelletizing plant and is a type
commonly supplied to the facility (Table 2). The particle
size was deliberately adjusted to obtain three distinct ranges:
50% <325 mesh, 75% <325 mesh, and 100% <325 mesh.
The central value of 75% <325 mesh represents the average

Table 1. Chemical composition of Pellet Feed studied

observed in operations, while 50% and 100% were selected
as extremes to assess the impact of this parameter on the
process.

2.2 Experimental design

Once the study variables were defined, a test program
was developed to generate sufficient results for analyzing
the influence of each parameter on output variables and to
support the creation of statistical models for pellet properties.

A factorial design with central point replication was
implemented. Table 3 lists the experimental points evaluated.

The central values were based on industrial setup
references. The lower and upper limits of each parameter
were extrapolated to ensure sensitivity in the results while
remaining feasible for execution.

Production rate was controlled by adjusting the
burning speed (4.48 m/min), which varied by +7% relative
to the central point.

The tests required to evaluate pellet properties included:

= Global chemical analysis

= Compressive Strength (ISO 4700)

= Tumble Index (ISO 3271)

Sample Fe(%)  FeO (%) SiO, (%) ALO, (%)

MgO (%)

CaO (%) Mn (%) LOI(%) P (%)

DR PF 69.15 - 0.58 0.30

0.02 0.03 0.04 0.92 0.023

Table 2. Anthracite Chemical Composition.

Chemical in Dry Basis (%) Sample Charac

Ash Chemical Analysis (%)

S
(%)

Fixed Volatile Ash

Carbon

C

(%) (cal/ g)

Spec.Heat Fe,O, SiO, ALO, MgO CaO MnO PO, TiO, Na, 0O K,0 SO,

70.5 134 16.1 73.6 1.2 6768.57 6.3

46.1

298 1.5 43 04 05 1.6 1.8 1.6 43

100

(%) Passing

0.010

0.100

1.000 10.000 100.000

Particle Size (mm)

Figure 1. Particle size distribution of DR Pellet Feed studied.
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Table 3. Factorial Design of Experiments

Anthracite Grate
Test Number %C
Particle Size Speed
1 0.6 50% < 325# High
2 0.6 50% < 325# Low
3 0.6 100% < 325# High
4 0.6 100% < 325# Low
5 1.2 50% < 325# High
6 1.2 50% < 325# Low
7 1.2 100% < 325# High
8 1.2 100% < 325# Low
Central Point 0.9 75% < 325# Medium
= Drop Test (internal methodology)
o , Core
= Dynamic Disintegration (ISO 11257)
Inner mantle
The drop test was performed acc'orc'hng to an internal Outer mantle
methodology developed by VALE, aiming to assess the
disintegration resistance of fired pellets under impact Shell
conditions. The test consists of dropping a sample of pellets

from a standard height of 2.0 meters, repeating the procedure
10 consecutive times. After the drops, the percentage of
disintegration is determined by the fraction of material that
breaks into particles smaller than 0.5 mm.

Additionally, pellets with compressive strength near
the sample average underwent the following characterizations:

= Optical microscopy of cross-sections to quantify phase
distribution (area %), total macroporosity, and degree
of maturation.

= Mercury porosimetry to assess open porosity in the
mesopore range.

Microstructural characterization of the pellets was
conducted using fragments collected after the compressive
strength test, selecting those with average strength values
representative of the sample set. In the cross-section of the
embedded specimen, four distinct regions were considered
from the outer layer inward: shell, outer mantle, inner mantle,
and core (see Figure 2).

The degree of maturation (DM), as defined by the
VALE’s Materials Characterization Laboratory, refers to the
stage of internal microstructural development, encompassing
the morphology of hematite grains, the formation of inter
and intragranular slag, and the distribution and size of
pores. According to the adopted classification, maturation
degree is divided into four levels: A, B, C, and D. Level
A corresponds to pellets with minimal microstructural
evolution, consisting predominantly of hematite while Level
D indicates a highly advanced, and sometimes excessive,
microstructural transformation.

Total microstructure was assessed by image analysis
of polished pellet cross-sections obtained using optical

Tecnol Metal Mater Min., Sdo Paulo, 2026;23:€3299

Figure 2. Schematic illustration of pellet sections.

microscopy. The microscope employed for these analyses was
a Carl Zeiss Axio Imager Z2m model. An internal software
was utilized to segment microstructures regions, based on
contrast and morphological criteria. For each sample, at
least ten fields were examined, and the microstructure was
quantified as the ratio of the area occupied by microstructural
features to the total area of the analyzed section.

To complement the microstructural analysis, porosity
and pore characteristics were evaluated using mercury intrusion
porosimeter, a highly effective technique for measuring
open porosity within the mesopore and macropore range
(30 nm to 360 pm).

These characterizations were conducted to support
explanations of how process parameters affect the physical
and metallurgical quality of the pellets.

3 Results and discussions

3.1 Chemical analysis results of fired pellets

The chemical analyses of the fired pellets from the
experiments are presented in Table 4. The minor variations
observed among the chemical analyses do not compromise
the study’s propositions and are justified by the intrinsic
variability of raw materials and the pellet firing process in
the pot grate.

The FeO contents in the pellets are low, indicating
that there was no over-firing of the samples. These values
are typically found in DR pellets produced in Tubarao.
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Table 4. Chemical Analysis of All Fired Pellets Produced

Sample Fe(%) FeO(%) SiO, (%)  ALO.(%)  CaO(%)  MgO(%) Mn(%) P(%) B,
Pellet 1 67.96 0.10 1.32 0.44 0.74 0.04 0.05 0.027 0.56
Pellet 2 67.97 0.11 1.35 0.44 0.75 0.04 0.05 0.027 0.55
Pellet 3 68.06 0.14 1.25 0.43 0.74 0.03 0.05 0.024 0.59
Pellet 4 67.91 0.11 1.32 0.39 0.74 0.04 0.05 0.027 0.56
Pellet 5 67.72 0.25 1.37 0.46 0.85 0.05 0.05 0.026 0.62
Pellet 6 67.91 0.15 1.35 0.44 0.76 0.04 0.05 0.028 0.56
Pellet 7 67.90 0.21 1.44 0.42 0.74 0.06 0.05 0.028 0.51
Pellet 8 68.03 0.13 1.26 0.46 0.75 0.03 0.05 0.027 0.60
Pellet 9 67.93 0.16 1.34 0.49 0.78 0.03 0.05 0.026 0.58
Pellet 10 67.98 0.21 1.32 0.44 0.77 0.02 0.05 0.027 0.58
Table 5. Physical Analysis of All Fired Pellets Produced
Green Pellet Fired Pellet
Samples NQ RCPCU RCPCS H,0 (%) TI+6,3mm Al -0,5mm CCS Drop Test Drop Test
(daN/p) (daN/p) (%) (%) (daN/p) +6,3mm (%) -0,5mm (%)
1 6.4 1.7 8.5 8.3 96.2 3.6 343 99.9 0.0
2 12.3 1.5 5.6 7.0 96.3 3.5 336 99.9 0.0
3 7.5 1.3 7.4 8.0 95.9 39 326 99.8 0.0
4 6.9 1.4 8.1 8.6 96.3 3.5 353 99.7 0.1
5 5.6 1.1 6.0 8.2 90.0 9.3 278 99.3 0.4
6 5.5 1.3 6.3 8.5 95.8 3.9 315 99.5 0.3
7 9.1 1.6 6.8 9.0 96.3 3.5 282 99.4 0.4
8 9.0 1.6 7.8 8.4 95.8 3.8 301 99.6 0.2
9 8.8 1.5 8.6 9.0 96.1 3.6 370 99.9 0.0
10 8.9 1.4 7.4 8.8 96.5 33 368 99.7 0.1

Where: NQ: number of drops; RCPCU: wet resistance of green pellet; RCPCS: resistance of green pellet after drying; TI: Tumble Index

Al: Abrasion Index

3.2 Physical, metallurgical, and microstructural
analysis of fired pellets

Table 5 presents the physical characterization results
of the fired pellets. The overall physical quality of both
green and fired pellets was very good, with the exception
of the abrasion index for sample 5, which was considered
anomalous/outlier.

Table 6 shows the metallurgical quality of the fired
pellets, including metallization degree (Met) and disintegration
index (RDI). The results indicate good metallurgical
performance across most samples.

Tables 7 to 9 summarize the results of microstructural
characterization via optical microscopy (OM), image-
based porosimetry, and mercury intrusion porosimetry
(Hg), respectively. These analyses provide insights into
phase distribution, porosity by region, and pore structure,
supporting the interpretation of how process parameters
affect pellet quality.

This classification system categorizes maturation
into four distinct levels: A, B, C, and D. Level A denotes
pellets with limited microstructural transformation,
predominantly composed of hematite. In contrast, Level D
signifies a highly advanced, and in some cases excessive,

Tecnol Metal Mater Min., Sdo Paulo, 2026;23:€3299

Table 6. Metallurgical Analysis of All Fired Pellets Produced

Sample 1SO11257
- 3,15mm (%) G.M. (%)
1 0.69 94.76
2 0.92 92.82
3 1.27 95.09
4 0.73 93.65
5 1.89 95.53
6 0.67 94.91
7 0.38 95.27
8 0.14 95.05
9 0.33 94.35
10 0.35 94.85

microstructural evolution. Levels B and C represent
intermediate stages, characterized by more refined
microstructures that contribute to enhanced compressive
strength [11].

As shown in the table and as anticipated, the pellets with
higher fixed carbon content exhibited greater microstructural
evolution. The pellets that approached maturation levels
C and D were those with 1.2% fixed carbon under low
production rates, as well as those with an intermediate
carbon content (0.9%C).
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Table 7. Phase quantification and degree of maturation via OM

Phases Classification (%)

Maturation Degree

Sample Silicate Ferrite Magnetite Hematite Shell Outer Inner Mantle Core
Mantle
1 1.9 1.1 0.5 96.5 B B B BC
2 1.7 1.3 0.5 96.5 B B BC BC
3 1.4 0.8 0.2 97.6 B B B B
4 0.8 0.9 0.3 98.1 B B BC BC
5 1.2 0.5 0.1 98.3 B BC D D
6 2.1 0.4 0.1 97.4 C C CD D
7 1.1 0.1 0.0 98.1 BC BC D D
8 1.8 0.9 0.0 97.2 BC BC CD D
9 2.1 0.3 0.3 97.3 BC BC C D
10 0.9 0.4 1.1 97.5 C C CD D
Table 8. Porosity by pellet region as observed via optical microscopy
Porosity (%)
Sample Shell Outer Mantle Inner Mantle Core
1 252 26.0 32.0 33.1
2 279 30.4 33.7 374
3 30.4 33.7 36.1 37.0
4 31.1 32.0 353 36.9
5 31.0 32.1 36.4 38.1
6 33.1 36.7 422 41.8
7 30.2 31.1 36.9 355
8 30.0 30.5 354 37.3
9 28.2 31.2 354 373
10 28.9 30.0 353 38.4

Table 9. Porosity of fired pellets measured by mercury intrusion porosimetry

Porosity(%) Average Diameter(um) Total Area (m*/g)
1 26.61 0.34 0.87
2 25.34 0.37 0.74
3 30.55 0.36 0.97
4 26.41 0.26 1.11
5 27.97 0.45 0.75
6 23.39 0.38 0.69
7 23.36 0.28 1.13
8 22.69 0.31 0.81
9 21.92 0.43 0.57
10 19.53 0.39 0.56

3.3 Statistical models

Ordinary Least Squares (OLS) regression is a
fundamental statistical technique used to estimate the
relationships between one or more independent variables
and a dependent variable. In OLS, the model assumes a
linear relationship, and the coefficients are determined by
minimizing the sum of the squared differences between the
observed values and the values predicted by the model. This
approach yields the best linear unbiased estimators under
the Gauss—Markov assumptions, provided that the errors are
homoscedastic and uncorrelated [ 12]. This model was chosen

Tecnol Metal Mater Min., Sdo Paulo, 2026;23:€3299

due to its robustness in identifying linear relationships between
independent variables and dependent variables, and because
it is widely used in iron ore pelletization studies [13-16].
To develop the regression models, we applied both
simple and multiple linear regression techniques using
ordinary least squares (OLS) estimation. The dependent
variables—such as CCS, Met, IA, and RDI—were modeled
as linear functions of independent predictors including C,
Ciclo, and Gran. Attempts were made to include Porosity
and Maturation Degree as variables in the model; however,
due to multicollinearity effects, they were excluded. For
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each model, we computed the coefficient of determination
(R?) to assess the proportion of variance explained by the
predictors. Additionally, we conducted hypothesis testing
on the regression coefficients using t-tests and reported the
associated p-values to evaluate the statistical significance
of each predictor.

A p-value below 0.05 was considered indicative of a
significant contribution to the model. Residual diagnostics,
including histogram and Q-Q plots, were also performed
to assess the normality assumption of the residuals, which
is critical for the validity of inference in linear regression.

The linear regression model developed for CCS
(Equation 1) demonstrated a good fit, as illustrated in
Figure 3. However, when examining the statistical significance
(p-value) of the predictors, it is evident that predictor C is
the most statistically significant.

e const: 0.0117
* C:0.0651
* Ciclo: 0.3752

e Gran: 0.9055

The regression model obtained for the variable Met,
presented in Equation 2, showed an excellent fit, explaining
nearly 80% of the model’s variability. Predictors C and
Ciclo were the most statistically significant contributors
to the model.

Equation 2:

Met = 85.0629 + 1.8500*C +

Equation 1: Q)
1.6749 *Ciclo + 0.0052*Gran
CCS=536.7860+-75.8333*C+— (1)
30.6838 *Ciclo+-0.0500*Gran R2: 0.7956
R2:0.5006 P-values for Met:
P-values for CCS: * const: 0.0000
CCS: Actual vs Predicted Met: Actual vs Predicted
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Figure 3. Plot of predicted vs actual values for the dependent variables CCS, Met, 1A, and RDI.
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Figure 4. Distribution Histogram and Q-Q Plot of the Residuals for the CCS and Met Models.

*C:0.0136

* Ciclo: 0.0168

¢ Gran: 0.4495

On the other hand, the models developed for IA and
RDI showed moderate fits (see Figure 3), with R? values
0f 0.42 and 0.31, respectively. Furthermore, neither model
includes predictors that are statistically significant at the
5% level. The low explanatory power of these parameters
is associated with the fact that they are influenced by other
predictive factors that were not mapped and may also be
related to the presence of outlier data points (e.g., pellet
#5 for [A).

By evaluating the residual distribution of the CCS
and Met models through the residual histograms and Q-Q
(Quantile-Quantile) plots shown in Figure 4, it is observed
that the residuals tend to follow a normal distribution,
supporting the validity of the models within the domain of
the modeled data.

Since the objective of this study was to quantitatively
establish a relationship between the main physical and
metallurgical variables and given that the predictor variables
are practically the same for both CCS and Met, a direct

Tecnol Metal Mater Min., Sdo Paulo, 2026;23:€3299
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Figure 5. Correlation between Met and CCS excluding C=0.6%.

T T
280 300

correlation between them was pursued. However, considering
the distinct behavior observed in the physical tests of Pellet
#5 and acknowledging that, in industrial settings, the C
values typically range from 0.9% to 1.2%, it was decided
to exclude the data points where C was equal to 0.6% from
the correlation analysis between Met and CCS. As shown in
Figure 5, this correlation proved to be strong and inversely
proportional, as expected.

After excluding the data points where C = 0.6%,
Equation 3 shows that for each additional unit in CCS, a
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reduction of approximately 0.0087 units in Met is expected.
The R? value of 0.7797 indicates that about 78.0% of the
variation in Met can be explained by CCS.

Equation 3:

Met = 97.7591 + (-0.0087) x CCS 3)

R*: 0.7797

3.4 Industrial scale validation

In order to deepen the understanding and validate the
quantitative dilemma observed in the laboratory, two pellet
samples (#7 and #9) were sent to a Direct Reduction reactor
operator. These corresponded to the following conditions:
Pellet#7 (1.2% C, 100% <325# and 4.82 m/min) and Pellet
#9 (0.9% C, 75% <325# and 4.18 m/min). Pellet #7 exhibited
the lowest compressive strength, whereas pellet #9 showed
the highest compressive strength.

This industrial test was conducted in a Midrex reactor
using the basket test methodology. Essentially, 10 split
metallic baskets were prepared and simultaneously loaded
with equal quantities of pellets #7 and #9. All baskets were
collected during a single shift of approximately 6 hours and
subsequently subjected to metallization analysis.

Table 10 presents the comparative results of these
pellets in both laboratory and industrial tests. It can be
observed that the metallization trends identified in the
laboratory were confirmed, with pellet A achieving the
highest metallization. According to the statistical models,
the 88 daN difference in compressive strength between
these pellets would correspond to a metallization gain of
approximately 0.76%, whereas the actual average gain
observed in the basket tests was 0.54%.

The standard deviations for the basket test metallization
were 0.32% for pellet #7 and 0.38% for pellet #9, based on
ten baskets per sample. Despite these levels of variability, the
observed difference in mean metallization between the two
samples (0.54%) remained statistically significant (Welch’s
t-test, two-sided: t = 3.44, df = 18, p < 0.01). Therefore,
this industrial trend supports the understanding that pellets
produced from the same feedstock and under controlled
conditions may exhibit a trade-off between metallurgical
and physical properties, such as compressive strength and
metallization.

The regressions models developed in this study and
the basket test, a negative correlation was observed between
CCS and the metallization rate (Met).

Table 10. Consolidated results of Pellet #7 and #9

This phenomenon can be attributed to several
microstructural factors:

= Higher CCS is typically associated with increased
pellet density and reduced porosity, which can hinder
the diffusion of reducing gases such as H, and CO
during the reduction process. This limitation in gas
permeability slows down the reduction kinetics,
thereby lowering the metallization rate.

* A more compact internal structure restricts the available
surface area and reactive sites for the reduction of
iron oxides, further impeding the overall reactivity
of the pellet.

These findings are consistent with previous studies.
For instance, Xu et al.[8! demonstrated that pellets with lower
porosity exhibit higher compressive strength but reduced
reducibility, due to limited gas diffusion pathways and
fewer internal reaction sites. Bersenev et al. [17] analyzed
the evolution of porosity in iron ore pellets roughout their
lifecycle—from green pellets to fully reduced states. They
found that reduction increases porosity significantly (by
100-200%), which enhances gas diffusion and metallization.
Conversely, pellets with initially low porosity (and thus higher
CCS) tend to exhibit lower reducibility due to restricted
gas pathways.

On the other hand, Giesche [18] discussed the
interdependence of surface area, density, and porosity in
powders, noting that higher density (and thus lower porosity)
materials often exhibit greater mechanical strength but
reduced reactivity, a principle that applies directly to iron
ore pellet behavior during reduction.

4 Conclusions

This study successfully quantified the trade-off between
compressive strength (CCS) and metallization degree (Met)
in direct reduction (DR) iron ore pellets, using a statistically
structured experimental design. By systematically varying
key process parameters—namely carbon content in the
green pellet, anthracite particle size, and grate speed—we
were able to develop regression models that describe how
these variables influence both the physical and metallurgical
performance of fired pellets.

The results revealed a clear and statistically significant
inverse relationship between CCS and Met. Higher CCS values,
while beneficial for mechanical handling and resistance to

Pellet CCS (daN) ISO-Lab Met (%) ISO-Lab Met (%) Basket Test
#7 282 95.27 9491
#9 370 94.35 94.37
Dif -88 0.92 0.54
Tecnol Metal Mater Min., Sdo Paulo, 2026;23:€3299 8/10
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degradation during transportation and reactor loading, were
consistently associated with lower metallization rates. This
behavior is attributed to microstructural changes: increased
CCS correlates with higher pellet density and reduced porosity,
which in turn restricts the diffusion of reducing gases such
as H, and CO. This limitation impairs the kinetics of the
reduction reactions, leading to lower degrees of metallization.
Optical microscopy and mercury porosimetry confirmed that
pellets with higher CCS exhibited more compact internal
structures and lower open porosity, reducing the number of
reactive sites available for gas-solid interactions.

The regression models developed in this study
demonstrated good predictive power, particularly for CCS
and Met, with R? values of 0.50 and 0.80, respectively. These
models not only provide a quantitative understanding of the
trade-off but also offer a practical tool for process optimization.
For instance, the model suggests that a reduction of 88 daN
in CCS could yield an increase of approximately 0.76%
in Met—an insight that can guide operational decisions
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