Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.20191462
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ELECTROCHEMICAL AND MECHANICAL BEHAVIOR OF ALUMINUM AA2024-T3 COATED WITH HYBRID MATRIX CONTAINING GRAPHENE OXIDE

COMPORTAMENTO ELETROQUÍMICO E MECÂNICO DO ALUMÍNIO AA2024-T3 REVESTIDO COM FILME HÍBRIDO CONTENDO ÓXIDO DE GRAFENO

Henrique Ribeiro Piaggio Cardoso, Lilian Vanessa Rossa Beltrami, Patrícia Marcolin, Tatiane Longhi Scopel, Sandra Raquel Kunst, Lucas Madalosso de Lemos, Thuany Maraschin, Nara Regina de Souza Basso, Célia Fraga Malfatti

Downloads: 0
Views: 156

Abstract

The aeronautics industry uses aluminum alloy AA2024-T3 due to its low density and good mechanical properties. However, this alloy requires the use of protective coatings because it does not have the corrosion and wear resistance required by the aeronautics industry. In this context, this work aims at evaluating the performanceof AA2024-T3 aluminum coated with hybrid films containing graphene oxide. The hybrid films were obtained by a dip coating process from a sol composed by tetraethoxysilane/3 (trimethoxysilylpropyl) methacrylate/cerium nitrate/ethanol/water with different concentrations of graphene oxide in suspension. The morphology was evaluated by Scanning Electron Microscopy. The corrosion resistance and wear behavior of the obtained coatings were characterized by open circuit potential, polarization curves and dry wear tests using constant force in a ball-on-plate tribometer. In the studied conditions, the metal coated with hybrid matrix films containing graphene oxide presented no changes in the corrosion resistance, but it showed a positive contribution to the wear resistance.

Keywords

Composite film; Graphene oxide; Corrosion and wear; Aluminum.

Resumo

A indústria aeronáutica utiliza a liga de alumínio AA2024-T3 devido a sua baixa densidade e boas propriedades mecânicas. Contudo, essa liga requer o uso de revestimentos protetores, pois não tem a resistência a corrosão e ao desgaste necessário para esta aplicação. Nesse contexto, este trabalho visa avaliar o desempenho da liga de alumínio AA2024-T3 revestida com filmes híbridos contendo óxido de grafeno. Os filmes híbridos são obtidos por processo de dip coating de um sol composto por tetraetoxisilano/3 (trimetoxisilylpropil) metacrilatonitrato de cério/etanol/água com diferentes concentrações de óxido de grafeno em suspensão. A morfologia foi avaliada por Microscopia Eletrônica de Varredura. O comportamento em relação a resistência à corrosão e ao desgaste dos revestimentos foi avaliada por potencial de circuito aberto, curvas de polarização e testes de desgaste a seco com força constante em um tribômetro ball-on-plate. Nas condições estudadas, o metal revestido com filmes híbridos contendo óxido de grafeno não apresentou mudanças na resistência a corrosão, mas mostrou uma contribuição positiva na resistência a abrasão.

Palavras-chave

Filme compósito; Óxido de grafeno; Corrosão e desgaste; Alumínio.

Referências

1 Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chemical Research in Toxicology. 2007;21:28-44.

2 Wang D, Bierwagen GP. Sol-gel coatings on metals for corrosion protection. Progress in Organic Coatings. 2009;64:327-338.

3 Hamdy AS, Doench I, Möhwald H. Intelligent self-healing corrosion resistant vanadia coating for AA2024. Thin Solid Films. 2011;520:1668-1678.

4 George FO, Skeldon P, Thompson GE. Formation of zirconium-based conversion coatings on aluminium and Al–Cu alloys. Corrosion Science. 2012;65:231-237.

5 Yi A, Li W, Du J, Mu S. Preparation and Properties of Chrome-Free Colored Na3AlF6 Conversion Coating on Aluminum Alloy. Applied Surface Science. 2012;258:5960-5964.

6 Heller DK, Fahrenholtz WG, O’Keefe MJ. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3. Corrosion Science. 2010;52:360-368.

7 Santa Coloma P, Izagirre U, Belaustegi Y, Jorcin JB, Cano FJ, Lapeña N. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications. Applied Surface Science. 2015;345:24-35. http://dx.doi.org/10.1016/j.apsusc.2015.02.179.

8 Hou S, Su S, Kasner ML, Shah P, Patel K, Madarang CJ. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chemical Physics Letters. 2010;501:68-74.

9 Lou Y, Liu G, Liu S. Shen J, Jin W. A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification. Applied Surface Science. 2014;307:631-637.

10 Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X. Mechanical properties of epoxy composites filled with silanefunctionalized graphene oxide. Composites. Part A, Applied Science and Manufacturing. 2014;64:79-89.

11 Kunst SR, Beltrami LVR, Cardoso HRP, Veja MRO, Baldin EKK, Menezes TL, et al. Effect of curing temperature and architectural (monolayer and bilayer) of hybrid films modified with polyethylene glycol for the corrosion protection on tinplate. Materials Research. 2014;17:1071-1081.

12 Kunst S, Beltrami L, Longhy L, Cardoso H, Menezes T, Malfatti C. Effect of diisodecyl adipate concentration in hybrid films applied to tinplate. Chemical Industry & Chemical Engineering Quarterly. 2016;01:13-13.

13 Kunst SR, Cardoso HRP, Beltrami LVR, Oliveira CT, Menezes TL, Ferreira JZ, et al. New Sol-gel formulations to increase the barrier effect of a protective coating against the corrosion and wear of galvanized steel. Materials Research. 2015;18:138-150.

14 Kunst SR, Cardoso HRP, Veja MRO, Beltrami LVR, Menezes TL, Malfatti CF. The effects of curing temperature on bilayer and monolayer hybrid films: Mechanical and electrochemical properties Corrosion. Journal of Applied Electrochemistry. 2014;44:759-771.

15 Kunst SR, Beltrami LVR, Cardoso HRP, Menezes TL, Malfatti C F. UV Curing paint on hybrid films modified with plasticizer diisodecyl adipate applied on tinplate: the effects of curing temperature and the double layer. Industrial & Engineering Chemistry Research. 2014;53:19216-19227.

16 Suk JW, Piner RD, An J, Ruoff RS. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010;4:6557- 6564.

17 Basso NRS, Fim F, Maraschin T, Pavoski G, Galland GB. A Few Layer Graphene Material Prepared by Thermal Reduction of GO. Proceedings of the 4th Graphene Conference; 2014 May 06-09; Toulouse, France.

18 Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Berichte der Deutschen Chemischen Gesellschaft. 1898;31:1481-1487.

19 Kunst SR, Ludwig GA, Mato JF, Malfatti CF. Influencia del tiempo de hidrólisis en la obtención de película híbrida con adición de iones cerio para la protección de aceros galvanizados. Revista Facultad de Ingenieria Universidad de Antioquia (Medellín). 2013;69:124-135.

20 Kunst SR, Matos JF, Antonini L, Ludwig GA, Fuhr L, Malfatti CF. Acero galvanizado pre-tratado con películas híbridas obtenido por recubrimiento por inmersión: influencia de la velocidad de retirada del substrato del sol. Avances En Ciencias e Ingeniería. 2013;4:97-107.

21 Kunst SR, Korb MA, Menezes TL, Tessaro G, Oliveira CT, Malfatti CF. Influência do processo de cura sobre as propriedades de filmes híbridos obtidos por sol-gel. Revista Escola de Minas. 2013;66:309-316.

22 Chen J, Yao B, Li B, Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2012;64:225-229.

23 Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4:4806-4814.

24 Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. Journal of Materials Chemistry. 2009;19:4632.

25 Okafor PA, Singh-Beemat J, Iroh JO. Thermomechanical and corrosion inhibition properties of graphene/epoxy ester–siloxane–urea hybrid polymer nanocomposites. Progress in Organic Coatings. 2015;88:237-244.

26 Tait WS. An introduction to electrochemical corrosion testing for practicing. Wisconsin: Pair O Docs Pubns; 1994. p. 79-94.

27 Singh-Beemat J, Iroh JO. The effect of morphology on the corrosion inhibition and mechanical properties of hybrid polymer coatings. Journal of Applied Polymer Science. 2013;128:1616-1624.

28 Osório WR, Freitas ES, Spinelli JE, Garcia A. Electrochemical behavior of a lead-free Sn–Cu solder alloy in NaCl solution. Corrosion Science. 2014;80:71-81.

29 Longun J, Iroh JO. Nano-graphene/polyimide composites with extremely high rubbery plateau modulus. Carbon. 2012;50:1823-1832.

30 Sahu SC, Samantara AK, Seth M, Parwaiz S, Singh BP, Rath PC, et al. A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochemistry Communications. 2013;32:22-26.

31 Schmuki P. From Bacon to barriers: a review on the passivity of metals and alloys. Journal of Solid State Electrochemistry. 2014;6:145-164.

32 El-Etre AY. Inhibition of aluminum corrosion using Opuntia extract. Corrosion Science. 2003;45:2485-2495.

33 Pacheco LG. Análise de viabilidade de implantação da técnica de espectroscopia de impedância eletroquímica para controle de processos de tratamento de superfície no setor aeroespacial [dissertation]. São Paulo: University of São Paulo; 2007.

34 Kunst SR, Cardoso HRP, Oliveira CT, Santana JA, Sarmento VHV, Muller IL, et al. Appl. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. Applied Surface Science. 2014;298:1-11.

35 Kunst SR, Beltrami LVR, Cardoso HRP, Santana JA, Sarmento VHV, Müller IL, et al. Characterization of Siloxanepoly(methyl methacrylate) Hybrid Films Obtained on a Tinplate Substrate Modified by the Addition of Organic and Inorganic Acids. Materials Research. 2015;18:151-163.

36 Qi K, Sun Y, Duan H, Guo X. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. Corrosion Science. 2015;98:500-506.

37 Garcia SJ, Markley TA, Mol JMC, Hughes AE. Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM-EDS. Corrosion Science. 2013;69:346-358.

38 Yu Y-Y, Chen C-Y, Chen W-C. Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer. 2003;44:593-601.

39 Cambon J-B, Esteban J, Ansart F, Bonino J-P, Turq V, Santagneli SH, et al. Effect of cerium on structure modifications of a hybrid sol-gel coating, its mechanical properties and anti-corrosion behavior. Materials Research Bulletin. 2012;47:3170-3176.

40 Han Y-H, Taylor A, Mantle MD, Knowles KM. UV curing of organic–inorganic hybrid coating materials. Journal of Sol-Gel Science and Technology. 2007;43:111-123.

41 Aal AA, El-Sheikh SM, Ahmed YMZ. Electrodeposited composite coating of Ni-W-P with nano-sized rod- and spherical-shaped SiC particles. Materials Research Bulletin. 2009;44:151-159.

42 Wang LY, Tu JP, Chen WX, Wang YC, Liu XK, Olk C, et al. Friction and wear behavior of electroless Ni-based CNT composite coatings. Wear. 2003;254:1289-1293.

43 Qu NS, Zhu D, Chan KC. Fabrication of Ni–CeO 2 nanocomposite by electrodeposition. Scripta Materialia. 2006;54:1421-1425.

44 Fenelon AM, Breslin CB. The electrochemical synthesis of polypyrrole at a copper electrode: Corrosion protection properties. Electrochimica Acta. 2002;47:4467-4476.

45 Khabazian S, Sanjabi S. The effect of multi-walled carbon nanotube pretreatments on the electrodeposition of Ni–MWCNTs coatings. Applied Surface Science. 2011;257:5850-5856.

46 Tao S, Li DY. Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology. 2006;17:65.

47 Liu C, Su F, Liang J. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance. Applied Surface Science. 2015;351:889-89.

5c8ff2a10e8825ba25122984 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections