Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.20191511
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

INCREASING THE PRODUCTIVITY IN A MAGNESITE PILOT PLANT COMBINING OPEN BALL MILL CIRCUIT AND HIGH FREQUENCY SCREENER

AUMENTO DA PRODUTIVIDADE EM UMA PLANTA PILOTO DE MAGNESITA COMBINANDO MOINHO DE BOLAS EM CIRCUITO ABERTO E PENEIRA DE ALTA FREQUÊNCIA

Matheus Naves Moraes, Paschoal Bonadia Neto, Paulo Roberto Gomes Brandão

Downloads: 0
Views: 1075

Abstract

Open circuit and high frequency screener have already been adopted by some mining operations, however not taking advantage of its full potential. This work presents a new approach, combining them to have a better use of the available energy and, thus, increasing productivity. This concept could fit not only the studied case but also any other ore, since it is based on the milling inner processes and the external classification. The studied magnesite process has currently four parallel ball mills operating in closed circuit with hydrocyclones, grinding the ore for the silicates flotation cells. The modification proposed changes the circuit to operate with three mills in open circuit with parameters that improves inner classification and particles transport and breakage. Their product are collected together to feed a high frequency screener, a more efficient equipment when compared to hydrocyclones. The screener oversize feeds a fourth ball mill to continue grinding and prepare the ore for the next steps, dewatering and reverse flotation. On the other hand, the screener undersize goes to desliming and reverse flotation equipment. According to the data collected in the pilot plant and the modeling for the industrial site, this modification could promote 27% increase in the productivity, due to 17.6% increase on mills feed and 7.8% in mass recovery, caused by loss reduction on desliming and flotation. The gain is expressive due to some inefficiency of the current circuit and still need to be validated on the industrial site.

Keywords

Grinding; Pilot plant; High frequency screen; Modeling; Magnesite.

Resumo

O circuito aberto e a peneira de alta frequência vêm sendo utilizados em circuitos de moagem, mas sem aproveitar seu inteiro potencial. Este trabalho apresenta uma nova abordagem, combinando-os com o objetivo de ter um uso mais eficiente da energia disponível e, assim, aumentando a produtividade. Este conceito poderia ser aplicado não só a este minério, mas a qualquer outro, uma vez que é baseado nos processos internos da moagem e na classificação externa. O processo de magnesita estudado possui quatro moinhos de bola operando em circuito fechado com hidrociclones, moendo o minério e preparando-o para as células de flotação de silicatos. A modificação proposta altera o circuito para operar com três moinhos em circuito aberto, com parâmetros que melhoram a classificação interna e também o transporte e quebra das partículas. Seus produtos seriam coletados e juntos enviados para alimentar uma peneira de alta frequência, equipamento de classificação mais eficiente que o hidrociclone. O material retido na peneira alimentaria o quarto moinho para continuar a moagem e preparar o minério para os próximos estágios, desaguamento e então, flotação reversa. O passante da peneira, por outro lado, segue diretamente para deslamagem e flotação reversa. De acordo com os resultados obtidos na planta piloto e o modelamento do circuito industrial, esta modificação poderia aumentar a produtividade em 27%, por possibilitar o aumento na alimentação da moagem em 17.6% e aumentar a recuperação mássica do circuito em 7.8%, reduzindo as perdas na deslamagem e flotação. Estes resultados são expressivos devido a certa ineficiência do circuito atual e ainda precisam ser validados industrialmente.

Palavras-chave

Moagem; Planta piloto; Peneira de alta frequência; Modelamento; Magnesita.

Referências

1 Li A. Chinese magnesia industry must meet new standards or face shutdown. Industrial Minerals. 2017 [cited 2017 July 07];595. Available at: http://www.indmin.com/Article/3731483/Issue/98111/Chinese-magnesia-industry-mustmeet-new-standards-or-face-shutdown.html

2 Yovanovic AP. Comminution engineering and grinding in tubular mills (Portuguese). MOPE: Belo Horizonte; 2004.

3 Tangsathitkulchai C. The effect of slurry rheology on fine grinding in a laboratory ball mill. International Journal of Mineral Processing. 2003;69:29-47.

4 Deniz V. The effects of ball filling and ball diameter on kinetic breakage parameters of barite powder. Advanced Powder Technology. 2012;23:640-646.

5 Singh N, Beaudoin R, Lebeuf, Farsangi, MC, Dumais, A. Debottlenecking the primary grinding circuit of the Nunavik nickel project. In: International Mineral Processing Congress. Proceedings of the 28th International Mineral Processing Congress; 2016, September 11-15; Quebec City, Canada: IMPC; 2016. p. 19.

6 Barkhuysen NJ. Implementing strategies to improve mill capacity and efficiency through classification by particle size only, with case studies. In: The South African Institute of Mining and Metallurgy. Proceedings of the 5th Southern African Base Metals Conference; 2009; Kasane, Botswana. Kasane: The South African Institute of Mining and Metallurgy; 2009. p. 101-114.

7 Mazzinghy DB. Modeling and simulation of a grinding circuit through breakage and specific energy parameters determination (Portuguese). [master dissertation]. Belo Horizonte: Universidade Federal de Minas Gerais; 2009.

8 Alves VK. Grinding media optimization using mathematical modeling and grinding simulation tools (Portuguese). [master dissertation]. Belo Horizonte: Universidade Federal de Minas Gerais; 2006.

9 Austin LG, Klimpel RR, Luckie PT. Process engineering of size reduction: ball milling. New York: SME AIME; 1984.

10 Austin L, Shoji K, Bhatia V, Jindal V, Savage K, Klimpel R. Some results on the description of size reduction as a rate process in various mills. Industrial & Engineering Chemistry. 1976;15:187-196.

11 Herbst, JA, Fuerstenau, DW. Scale-up procedure for continuous grinding mill design using population balance models. International Journal of Mineral Processing. 1980;7:01-31.

12 Hogg R, Fuerstenau DW. Power relationships for tumbling mills. SME-AIME Transactions. 1972;252:418-423

13 McIvor RE. The GMSG guideline for determining the bond efficiency of industrial grinding circuits. In: International Mineral Processing Congress. Proceedings of the 28th International Mineral Processing Congress; 2016 September 11-15; Quebec City, Canada: IMPC; 2016. p.17.

14 Forsund B, Norkyn I, Sandvik KL, Winther K. Sydvarangers 6,5m diameter x 9,65m ball mills. In: International Mineral Processing Congress. Proceedings of 16th International Mineral Processing Congress; 1988 June 5-10; Stockholm, Sweden. Amsterdam: Elsevier Science Publishers BV; 1988. p. 171-183.

15 Von Reeken FJM, Lange J, Steensma JJS, Duyvesteyn WPC. Factors affecting the lead-zinc separation at the ground concentrator. International Journal of Mineral Processing. 1989;27:21-37.

16 Makokha AB, Madara DS, Namago SS, Ataro E. Effect of slurry solids concentration and ball Loading on mill residence time distribution. International Journal of Mining Engineering and Mineral Processing. 2014;3:21-27.

17 Jameson GJ. The effect of surface liberation and particle size on flotation rate constants. Minerals Engineering. 2012;36-38:132-137.

5c87a8510e88255127db04aa tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections