Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/doi/10.4322/2176-1523.1077
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

STRUCTURAL STABILITY OF TERNARY ANTIMONIDES T 10 Sb 5 T’ (T=Ti, Zr, Hf, T’=V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh)

ESTABILIDADE ESTRUTURAL DE COMPOSTOS TERNÁRIOS DE ANTIMONIO T 10 Sb 5 T’ (T=Ti, Zr, Hf, T’=V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh)

Colinet, Catherine; Tedenac, Jean-Claude

Downloads: 0
Views: 1024

Abstract

The crystal and thermodynamic properties of T 10 Sb 5 T’ ternary compounds where T=Ti, Zr, Hf and T’= V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh have been investigated by means of first principle calculations. The structure of these compounds is considered as a ternary variant of the W 5 Si 3 type. Three possible ordered structures have been investigated in the present work. The two structures in which the Sb and T’ atoms alternate along chains parallel to the c axis are the most stable ones. The calculated structural parameters are in good agreement with the experimental data. Both electronic and size effects allow to explain the stability of the ternary T 10 Sb 5 T’ compounds.

Keywords

DFT calculations, Enthalpies of formation, W 5 Si 3 ternary variant, Nb 5 Sn 2 Si-type.

Resumo

As propriedades termodinâmicas e estruturas cristalinas dos compostos ternários do tipo T 10 Sb 5 T’ onde T=Ti, Zr, Hf and T’= V, Cr, Mn, Fe, Co, Ni, Cu, Pd, Pt, Rh foram investigadas através de cálculos de primeiros princípios. A estrutura destes compostos é considerada uma variante ternária da estrutura do tipo W 5 Si 3 . Tres possibilidades de ordenamento da estrutura foram investigadas neste trabalho. As duas estruturas nas quais os átomos de Sb e T’ se alternam ao longo de cadeias paralelas ao eixo c da estrutura são as mais estáveis. Os parâmetros estruturais calculados estão em acordo com os valores experimentais. Tanto efeitos eletrônicos como de tamanho permitem explicar a estabilidade dos compostos ternários do tipo T 10 Sb 5 T’.

Palavras-chave

Cálculos DFT, Entalpias de formação, Variante ternária da estrutura W 5 Si 3 , Estrutura tipo Nb 5 Sn 2 Si.

Referências

1 Horyn R, Lukaszewicz K. The crystal structure of Nb 5 Sn 2 Si. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Chimiques. 1970;18:59-64.

2 Bulanova M, Tretyachenko L, Meleshevich K, Saltykov V, Vereshchaka V, Galadzhyj O, et al. Influence of tin on the structure and properties of as-cast Ti-rich Ti-Si alloys. Journal of Alloys and Compounds. 2003;350:164-173.

3 Zhan Y, Yang W, Xu Y, Zhang X. Experimental phase diagram of the Ti–Si–Sn ternary system at 473 K. Journal of Alloys and Compounds. 2011;509:5269-5273.

4 Ukei K, Shishido T, Fukuda T. Structure of Nb 5 Sn 2 Ga. Acta Crystallographica. 1989;C45:349-350.

5 Shishido T, Oku M, Okada S, Kudou K, Ye J, Sasaki T, et al. Chemical state and properties of the Nb 5 Sn 2 Ga grown by the self-component flux method using tin as a solvent. Journal of Alloys and Compounds. 1998;281(2):196-201.

6 Ye J, Horiuchi H, Shishido T, Toyota N, Ukei K, Sasaki T, et al. Growth and characterization of Va-Sn-Ga (Va = Ta, Nb, V) superconducting compounds. Journal of Crystal Growth. 1990;99:969-974.

7 Shishido T, Tanaka M, Horiuchi H, Toyota N, Fukuda T. Flux growth and characterization of a new ternary intermetallic compound Nb 5 Sn 1.5 Ge 1.5 . Journal of Alloys and Compounds. 1992;178(1-2):L5-L9.

8 Shishido T, Ukei K, Toyota N. Range of solid solution of the superconducting ternary compound Nb 5 Sn 2 Ga. Journal of Alloys and Compounds. 1993;202:L1-L3.

9 Ye J, Horiuchi H, Shishido T, Ukei K, Fukuda T. Structure of Ta 5 SnGa 2. Acta Crystallographica. 1990;C46:1193-1195.

10 Tanaka M, Horiuchi H, Shishido T, Fukuda T. Structure of Nb 5 (Gex,Sn 1- x) 2 Ge x = 0.25. Acta Crystallographica. 1993;C49:437-439.

11 Pietzka M, Gruber U, Schuster J.C, Investigation of phase equilibria in the ternary Ti-Al-Sn. Journal de Physique IV. 1993;3:473-476.

12 Pietzka MA, Schuster JC. New ternary aluminides T 5 M 2 Al having W 5 Si 3 -type structure. Journal of Alloys and Compounds. 1995;230:L10-L12.

13 Kleinke H. Ti 5 Si 1.3 Sb 1.7 the first titanium silicide antimonide forming a crystal structure not found in either binary system. Canadian Journal of Chemistry. 2001;79:1338-1343.

14 Kozlov AY, Pavlyuk VV. New ternary antimonides Ti 5 XSb 2 with W 5 Si 3 structure type. Intermetallics. 2003;11:237-239.

15 Kozlov AY, Pavlyuk VV. Investigation of the interaction between the components in the Ti-(Si,Ge)-Sb systems at 670 K. Journal of Alloys and Compounds. 2004;367:76-79.

16 Voznyak I, Tokaychuk Y, Gladyshevskii R. The system Hf-Ga-Sn at 600°C, and the crystal structure of Hf 5 Ga 1.24- Sn 1.76-2.48 . Chem. Met. Alloys. 2011;4:175-187. 0.52

17 Tokaychuk I, Tokaychuk YA, Gladyshevskii R. The ternary system Hf-Ga-Sb at 600°C. Chemistry of Metals and Alloys. 2013;6:75-80.

18 Colinet C, Tedenac J-C. Structural stability of the D8 m -Ti 5 Sn 2 Si compound. Calphad. 2011;35:643-647.

19 Colinet C, Tedenac J-C. Ab-initio study of the stability of the D8 m -Nb 5 Sn 2 Ga and D8 m -Ta 5 SnGa 2 compounds. Journal of Alloys and Compounds. 2015;625:57-63.

20 Colinet C, Tedenac J-C. Structural stability of ternary D8 m -Ti 5 Sb 2 X (X=Al, Ga, In, Si, Ge, Sn) compounds. Calphad. 2015;49:8-18.

21 Fartushna I, Bulanova M, Colinet C, Tedenac J-C. Stability of the D8 m -Ti 5 Sn 2 Ga compound. Experimental determinations and first principle calculations. The Journal of Chemical Thermodynamics. 2014;78:269-277.

22 Koblyuk NO, Romaka LP, Bodak OI. Interaction between the components in the Ti-Cu-Sb system at 770 K. Journal of Alloys and Compounds. 2000;309(1-2):176-178.

23 Dremov RV, Koblyuk N, Mudryk Y, Romaka L, Sechovský V. Electrical resistivity and magnetism in some ternary Intermetallics. Journal of Alloys and Compounds. 2001;317-318:293-296.

24 Tkachuk A, Gorelenk Y, Stadnyk Y, Padlyak B, Jankowska-Frydel A, Bodak O, et al. Interaction between components in the Ti-Mn-Sb system at 870 K and the physical properties of Ti 5 Mn 0.45 Sb 2.55 . Journal of Alloys and Compounds. 2001;319(1-2):74-79.

25 Tkachuk A, Romaka L, Hlil EK, Fruchart D, Melnychenko-Koblyuk AN, Stadnyk Y. Crystal, electric transport properties and electronic structures of the Ti 5 Me 1-x Sb 2+x series of compounds (Me = Cr, Mn, Fe, Co, Ni, Cu). Journal of Alloys and Compounds. 2009;470(1-2):35-41.

26 Wei X, Liu H, He W, Zeng L. Thermal expansion behavior and crystal structure of CuSb 2 Ti 5 . Materials Letters. 2008;62:615-618.

27 Kaiser JW, Jeitschko W. Ternary transition metal antimonides T 5 T′ 1-x Sb 2+x (T = Ti, Zr, Hf; T′ = Fe, Co, Ni, Cu, Ru, Rh, Pd, Cd) with Nb 5 SiSn 2 (Ordered W 5 Si 3 , Filled V 4 SiSb 2 type structure. Zeitschrift fur Anorganische und Allgemeine Chemie. 2002;628(2):337-343.

28 Romaka VV, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, et al. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems. Journal of Solid State Chemistry. 2013;197:103-112.

29 Stadnyk Y, Romaka L, Horyn A, Tkachuk A, Gorelenko Y, Rogl P. Isothermal sections of the Ti-Co-Sn and Ti-Co-Sb systems. Journal of Alloys and Compounds. 2005;387(1-2):251-255.

30 Melnyk G, Tremel W. The titanium-iron-antimony ternary system and the crystal and electronic structure of the interstitial compound Ti 5 FeSb 2 . Journal of Alloys and Compounds. 2003;349(1-2):164-171.

31 Tkachuk AV, Gorelenko YK, Padlyak BV, Jankowska Frydel A, Stadnyk YV. Magnetic properties of ternary W 5 Si 3 -type compounds. Journal of Magnetism and Magnetic Materials. 2002;242-245:901-903.

32 Melnychenko N, Romaka L, Stadnyk Y, Fruchart D, Bodak O. Zr-Cu-Sb ternary system and the crystal structure of new ternary compounds. Journal of Alloys and Compounds. 2003;352(1-2):89-91.

33 Kwon Y-U, Sevov SC, Corbett JD. Substituted W 5 Si 3 - and Zr 6 Al 2 Co-type phases formed in the zirconium-antimony and zirconium-tin systems with iron group metals. Chemistry of Materials. 1990;2(5):550-556.

34 Romaka L, Tkachuk A, Stadnyk Y, Romaka VA. Phase equilibria in Zr-Ni-Sb ternary system at 870 K. Journal of Alloys and Compounds. 2009;470(1-2):233-236.

35 Romaka VV, Romaka L, Rogl P, Stadnyk Y, Melnychenko N, Korzh R, et al. Peculiarities of thermoelectric half-Heusler phase formation in Zr-Co-Sb ternary system. Journal of Alloys and Compounds. 2014;585:448-454.

36 Melnyk G, Leithe-Jasper A, Rogl P, Skolozdra R. The antimony-iron-zirconium (Sb-Fe-Zr) system. Journal of Phase Equilibria. 1999;20(5):497-507.

37 Melnyk G, Bauer E, Rogl P, Skolozdra R, Seidl E. Thermoelectric properties of ternary transition metal antimonides. Journal of Alloys and Compounds. 2000;296:235-242.

38 Tkachuk AV, Mar A. Structure and physical properties of ternary W 5 Si 3 -type antimonides and bismuthides Zr 5 M 1- x Pn 2+x (M=Cr, Mn; Pn=Sb, Bi). Journal of Solid State Chemistry. 2004;177(11):4136-4141.

39 Romaka L, Tkachuk A, Stadnyk Y, Romaka VV, Horyn A, Korzh R. Peculiarity of component interaction in Zr-Mn-{Sn, Sb} ternary systems. Journal of Alloys and Compounds. 2014;611:401-409.

40 Xie W, Luo H, Phelan BF, Cava RJ. Zr 5 Sb 3-x Ru x , a new superconductor in the W 5 Si 3 structure type. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices. 2015;3(31):8235-8240.

41 Tkachuk AV, Mar A. The ternary Zr-Pt-Sb system. Journal of Alloys and Compounds. 2007;442(1-2):122-125.

42 Kleinke H, Ruckert C, Felser C. Mixed linear (M,Sb) chains in the new antimonides Hf 10 M (δ) Sb (6-δ) (M = V, Cr, Mn, Fe, Co, Ni, Cu): crystal and electronic structures, phase ranges, and electrical and magnetic properties. European Journal of Inorganic Chemistry. 2000;(2):315-322.

43 Melnychenko-Koblyuk N, Romaka L, Akselrud L, Romaka VV, Stadnyk Y. Interaction between components in Hf-Cu-Sb ternary system at 770 K. Journal of Alloys and Compounds. 2008;461(1-2):147-149.

44 Xie W, Luo H, Seibel EM, Nielsen MB, Cava RJ. Superconductivity in Hf 5 Sb 3-x Ru x : are Ru and Sb a critical charge- transfer pair for superconductivity. Chemistry of Materials. 2015;27(13):4511-4514.

45 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals an semiconductors using a plane- wave basis set. Computational Materials Science. 1996;6:15-50.

46 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics. 1996;54:11169-11186.

47 Blochl PE. Projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics. 1994;50:17953-17979.

48 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics. 1998;59:1758-1775.

49 Perdew JP, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1995;77:3865-3868.

50 Methfessel M, Paxton AT. High precision sampling for Brillouin-zone integration in metals. Physical Review B: Condensed Matter and Materials Physics. 1989;40:3616-3621.

51 Monkhorst HJ, Pack JD. Special points for Brillouin-zone Integrations. Physical Review B: Condensed Matter and Materials Physics. 1976;135:5188-5192.

52 Garcia E, Corbett JD. A synthetic and structural study of the zirconium- antimony system. Journal of Solid State Chemistry. 1988;73:440-451.

53 Kleinke H. Ti 5 Sb 2.2 Se 0.8 : the first titanium antimonide- selenide. Journal of Alloys and Compounds. 2002;336:133.

54 Garcia E, Corbett JD. Chemistry of polar intermetallic compounds. Study of two Zr 5 Sb 3 intermetallic phases, hosts for a diverse interstitial chemistry. Inorganic Chemistry. 1988;27:2353-2359.

55 Kozlov AY, Pavlyuk VV. Solid solutions based on the M 5 X 3 binary compounds in the M-(Si,Ge)-Sb ternary systems (M= Ti, Zr, Y; X= Si, Ge, Sb). Chem. Ochr. Srodowiska. 2003;8:23-28.

56 Villars P, Calvert LD. Pearsons handbook of crystallographic data for intermetallic phases. Metals Park: ASM; 2011.

57 Morozkin AV. Phase equilibria in the Sm-Zr-Sb system at 1070 K. Journal of Alloys and Compounds. 2002;336:187-189.

58 Kleinke H, Felser C. New binary antimonide Hf 5 Sb 3 . Differences and similarities to the Zr antimonides. Journal of Alloys and Compounds. 1999;291:73-79.
588697037f8c9dd9008b47d5 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections