SYNTHESIS OF WC-12wt%Co NANOCOMPOSITES BY HIGH ENERGY BALL MILLING AND THEIR MORPHOLOGICAL CHARACTERIZATION
SÍNTESE DE NANOCOMPÓSITOS DE WC-12wt%Co POR MOAGEM DE ALTA ENERGIA E SUA CARACTERIZAÇÃO MORFOLÓGICA
Guaglianoni, Waleska Campos; Takimi, Antonio; Vicenzi, Juliane; Bergmann, Carlos Pérez
http://dx.doi.org/10.4322/2176-1523.0838
Tecnol. Metal. Mater. Min., vol.12, n3, p.211-215, 2015
Abstract
In this work micrometric particles of WC and Co were processed by high energy ball milling in a planetary ball mill. We evaluated the phase formation and changes in microstructure of WC-12wt%Co as a result of the following milling parameters: ball-to-powder weight ratio, milling time and speed. The material was characterized by X-ray diffraction (crystalline phases and crystallite size), particle size analysis (average grain diameter), the BET method (surface area), and scanning electron microscopy (powder morphology). The average particle size (D50) and crystallite size were respectively 1.63µm and 13.8nm, for a surface area of 4.709 m2/g, using a ball-to-powder weight ratio of 1:20, a milling time of 5h and a milling speed of 500 rpm.
Keywords
High energy ball milling, WC-12wt%Co, Nanocomposites, Microstructure.
Resumo
Neste trabalho, partículas micrométricas de WC e Co foram processadas por moagem de alta energia em um moinho planetário. Avaliamos a formação de fases e mudanças na microestrutura do WC-12wt%Co como resultado dos seguintes parâmetros de moagem: razão mássica bolas/pó, tempo e velocidade de moagem. O material foi caracterizado por difração de Raios-X (fases cristalinas e tamanho de cristalito), análise granulométrica (diâmetro médio), método BET (área superficial) e microscopia eletrônica de varredura (morfologia do pó). O tamanho médio de partícula e o tamanho de cristalito foram 1.63µm e 13.8nm, respectivamente, para uma área superficial de 4.709m2/g, usando razão mássica bolas/pó de 1:20, tempo de moagem de 5h e velocidade de moagem de 500rpm.
Palavras-chave
Moagem de alta energia, WC-12wt%Co, Nanocompósitos, Microestrutura.
Referências
1. Hewitt SA, Kibble KA. Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites. International Journal of Refractory Metals & Hard Materials. 2009;27(6):937-948. http://dx.doi. org/10.1016/j.ijrmhm.2009.05.006.
2. Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC–10 wt%Co–xTaCnano powders. International Journal of Refractory Metals & Hard Materials. 2009;27(4):801-805. http://dx.doi.org/10.1016/j.ijrmhm.2009.02.001.
3. Enayati MH, Aryanpour GR, Ebnonnasir A. Production of nanostructured WC–Co powder by ball milling. International Journal of Refractory Metals & Hard Materials. 2009;27(1):159-163. http://dx.doi.org/10.1016/j. ijrmhm.2008.06.005.
4. El-Eskandaranya MS, Mahdaya AA, Ahmedb HA, Amera AH. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations. Journal of Alloys and Compounds. 2000;312(1-2):315-325. http://dx.doi.org/10.1016/S0925-8388(00)01155-5.
5. Zhang FL, Zhu M, Wang CY. Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder. International Journal of Refractory Metals & Hard Materials. 2008;26(4):329-333. http:// dx.doi.org/10.1016/j.ijrmhm.2007.08.005.
6. Raihanuzzaman RM, Jeong TS, Ghomashchi R, Xie Z, Hong SJ. Characterization of short-duration high-energy ball milled WC–Co powders and subsequent consolidations. Journal of Alloys and Compounds. 2014;615:564-568. http://dx.doi.org/10.1016/j.jallcom.2013.12.104.
7. Mandel K, Krüger L, Schimpf C. Particle properties of submicron-sized WC–12Co processed by planetary ball milling. International Journal of Refractory Metals & Hard Materials. 2014;42:200-204. http://dx.doi.org/10.1016/j. ijrmhm.2013.09.006.
8. Suryanarayana C. Mechanical alloying and milling. Boca Raton: CRC Press; 2004. 488 p.
9. Onisei S, Badilita V, Stoiciu F, Velea T, Predica V, Lupu C, et al. Mechanochemical Activation of Copper Concentrate and the Effect on Oxidation of Metal Sulphides. Revista de Chimie. 2012;63:591-597.
10. Suryanarayana C. Mechanical Alloying and Milling. Progress in Materials Science. 2001;46(1-2):1-184. http://dx.doi.org/10.1016/S0079-6425(99)00010-9.
2. Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC–10 wt%Co–xTaCnano powders. International Journal of Refractory Metals & Hard Materials. 2009;27(4):801-805. http://dx.doi.org/10.1016/j.ijrmhm.2009.02.001.
3. Enayati MH, Aryanpour GR, Ebnonnasir A. Production of nanostructured WC–Co powder by ball milling. International Journal of Refractory Metals & Hard Materials. 2009;27(1):159-163. http://dx.doi.org/10.1016/j. ijrmhm.2008.06.005.
4. El-Eskandaranya MS, Mahdaya AA, Ahmedb HA, Amera AH. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations. Journal of Alloys and Compounds. 2000;312(1-2):315-325. http://dx.doi.org/10.1016/S0925-8388(00)01155-5.
5. Zhang FL, Zhu M, Wang CY. Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder. International Journal of Refractory Metals & Hard Materials. 2008;26(4):329-333. http:// dx.doi.org/10.1016/j.ijrmhm.2007.08.005.
6. Raihanuzzaman RM, Jeong TS, Ghomashchi R, Xie Z, Hong SJ. Characterization of short-duration high-energy ball milled WC–Co powders and subsequent consolidations. Journal of Alloys and Compounds. 2014;615:564-568. http://dx.doi.org/10.1016/j.jallcom.2013.12.104.
7. Mandel K, Krüger L, Schimpf C. Particle properties of submicron-sized WC–12Co processed by planetary ball milling. International Journal of Refractory Metals & Hard Materials. 2014;42:200-204. http://dx.doi.org/10.1016/j. ijrmhm.2013.09.006.
8. Suryanarayana C. Mechanical alloying and milling. Boca Raton: CRC Press; 2004. 488 p.
9. Onisei S, Badilita V, Stoiciu F, Velea T, Predica V, Lupu C, et al. Mechanochemical Activation of Copper Concentrate and the Effect on Oxidation of Metal Sulphides. Revista de Chimie. 2012;63:591-597.
10. Suryanarayana C. Mechanical Alloying and Milling. Progress in Materials Science. 2001;46(1-2):1-184. http://dx.doi.org/10.1016/S0079-6425(99)00010-9.