Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.0852
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

CORROSION BEHAVIOR OF A CONVERSION COATING BASED ON ZIRCONIUM AND COLORANTS ON GALVANIZED STEEL BY ELECTRODEPOSITION

COMPORTAMENTO DA CORROSÃO DE UM REVESTIMENTO DE CONVERSÃO À BASE DE ZIRCÔNIO E CORANTES NO AÇO ZINCADO POR ELETRODEPOSIÇÃO

Costa, Josiane Soares; Agnoli, Raquel Dei; Ferreira, Jane Zoppas

Downloads: 0
Views: 1139

Abstract

Corrosion performance of Zr-based coating on substrates obtained by zinc electrodeposition in an alkaline bath is compared to chromate coatings (Cr III and Cr VI). The “nano Zr” is a conversion coating formed by immersion in a hexafluorozirconic acid solution. Since the “nano Zr” coating is transparent, the addiction of a colorant provides color to the surface. In this case, the colorant, when applied after the conversion coating, conferred the yellow color to the surface. The coating produced improves the corrosion protection of the substrate. For this study the samples were analyzed by electrochemical impedance spectroscopy (EIS) and accelerated corrosion test in a humidity chamber. The results showed similar behaviors between the “nano Zr”, colorant and the chromate (Cr III) coating. Therefore this kind of conversion coating is a promising substitute for chromate coatings.

Keywords

Nano Zr, Immersion process, Electrodeposited zinc, Hexafluorozirconic alkaline solution.

Resumo

No presente estudo, avaliou-se o desempenho de revestimentos à base de zircônio e corante sobre substratos de zinco obtidos por eletrodeposição em meio alcalino, em relação aos revestimentos de cromato (CrIII e CrVI). O  revestimento “nano Zr” é obtido através da imersão em solução de conversão à base de ácido hexafluorzircônio. Uma vez que o revestimento “nano Zr” é transparente, a adição de um corante proporciona cor à superfície. Neste caso, o corante, quando aplicado depois do revestimento de conversão, confere cor amarela à superfície. O revestimento produzido melhora a proteção contra a corrosão do substrato. Para este estudo ensaios de espectroscopia de impedância eletroquímica (EIS) e testes em câmara úmida foram feitos. Os resultados mostraram comportamentos semelhantes entre o “Zr nano” e corante e o revestimento cromato (CrIII). Por conseguinte, este tipo de revestimento de conversão é um promissor substituto para os revestimentos de cromatização.

Palavras-chave

Nano Zr, Processo de imersão, Zinco eletrodepositado, Solução ácida de hexaflúorzircônio.

Referências

1 Hosseini M, Ashassi-Sorkhabi H, Ghiasvand HAY. Corrosion protection of electro-galvanized steel by green conversion coatings. Journal of Rare Earths. 2007;25(5):537-543. http://dx.doi.org/10.1016/S1002-0721(07)60558-4.

2 Almeida E, Fedrizzi L, Diamantinio TC. Oxidising alternative species to chromium VI in zinc-galvanised steel surface treatment. Part 2 - an electrochemical study. Surface and Coatings Technology. 1998;105(1-2):97-101. http://dx.doi.org/10.1016/S0257-8972(98)00476-9.

3 Yu S-X, Zhang R-J, Tang Y-F, Ma Y-l, Du W-C. Composition and performance of nanostructured zirconium titanium conversion coating on aluminum-magnesium alloys. Journal of Nanomaterials. 2013;2013:1-8. http://dx.doi.org/10.1155/2013/594273.

4 Wang SH, Liu CS, Shan FJ. Corrosion behavior of a zirconium-titanium based phosphonic acid conversion coating on AA6061 aluminium alloy. Acta Metallurgica Sinica. English Letters. 2008;21(4):269-274. http://dx.doi.org/10.1016/S1006-7191(08)60048-4.

5 Ghanbari A, Attar MM. Surface free energy characterization and adhesion performance of mild steel treated based on zirconium conversion coating: a comparative study. Surface and Coatings Technology. 2014;246:26-33. http://dx.doi.org/10.1016/j.surfcoat.2014.02.057.

6 Bustamante G, Fabri-Miranda FJ, Margarit ICP, Mattos OR. Influence of prephosphating on painted electrogalvanized steel. Progress in Organic Coatings. 2003;46(2):84-90. http://dx.doi.org/10.1016/S0300-9440(02)00214-X.

7 Mohammadloo HE, Sarabi AA, Alvani AAS, Salimi R, Sameie H. The effect of solution temperature and pH on corrosion performance and morphology of nanoceramic-based conversion thin film. Materials and Corrosion. 2013;64(6):535-543. http://dx.doi.org/10.1002/maco.201106384.

8 Eivaz Mohammadloo H, Sarabi AA, Sabbagh Alvani AA, Sameie H, Salimi R. Nano-ceramic hexafluorozirconic acid based conversion thin film: surface characterization and electrochemical study. Surface and Coatings Technology. 2012;206(19-20):4132-4139. http://dx.doi.org/10.1016/j.surfcoat.2012.04.009.

9 Bibber JW. Non-chrome-containing conversion coatings for zinc and zinc alloys: environmentally friendly alternatives provide equal or better adhesion and corrosion resistance as conventional methods. Metal Finishing. 2008;106(4):41-46. http://dx.doi.org/10.1016/S0026-0576(08)80091-8.

10 Droniou P, Fristad WE, Liang J-L. Nanoceramic-based conversion coating: Ecological and economic benefits position process as a viable alternative to phosphating systems. Metal Finishing. 2005;103(12):41-43. http://dx.doi.org/10.1016/S0026-0576(05)80849-9.

11 Xia X, Zhitomirsky I, McDermid JR. Electrodeposition of zinc and composite zinc–yttria stabilized zirconia coatings. Journal of Materials Processing Technology. 2009;209(5):2632-2640. http://dx.doi.org/10.1016/j.jmatprotec.2008.06.031.

12 Rahim AA, Rocca E, Steinmetz J, Kassim MJ, Adnan R, Sani Ibrahim M. Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium. Corrosion Science. 2007;49(2):402-417. http://dx.doi.org/10.1016/j.corsci.2006.04.013.

13 Qian B, Hou B, Zheng M. The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions. Corrosion Science. 2013;72:1-9. http://dx.doi.org/10.1016/j.corsci.2013.01.040.

14 Ross TK, Francis RA. The treatment of rusted steel with mimosa tannin. Corrosion Science. 1978;18(4):351-361. http://dx.doi.org/10.1016/S0010-938X(78)80049-3.

15 Matamala G, Smeltzer W, Droguett G. Comparison of steel anticorrosive protection formulated with natural tannins extracted from acacia and from pine bark. Corrosion Science. 2000;42(8):1351-1362. http://dx.doi.org/10.1016/S0010-938X(99)00137-7.

16 Moraes JA. Estudo do revestimento nanocerâmico zircônio/titânio em aço carbono na proteção contra corrosão. Fortaleza: INTERCORR; 2010.

17 Costa JS. Influência da adição de corante nos revestimentos de conversão à base de zircônio em peças de aço zincado por eletrodeposição. Fortaleza: INTERCORR; 2014.

18 Costa JS. Avaliação do revestimento de conversão à base de zircônio e tanino sobre aço zincado por eletrodeposição. Porto Alegre: UFRGS; 2014.

19 Gusmano G, Montesperelli G, Rapone M, Padeletti G, Cusmà A, Kaciulis S, et al. Zirconia primers for corrosion resistant coatings. Surface and Coatings Technology. 2007;201(12):5822-5828. http://dx.doi.org/10.1016/j.surfcoat.2006.10.036.

20 Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Di Maggio R. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol–gel zirconia films. Electrochimica Acta. 2001;46(24-25):3715-3724. http://dx.doi.org/10.1016/S0013-4686(01)00653-3.

21 Andreatta F, Turco A, de Graeve I, Terryn H, de Wit JHW, Fedrizzi L. SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminum alloy. Surface and Coatings Technology. 2007;201(18):7668-7685. http://dx.doi.org/10.1016/j.surfcoat.2007.02.039.

22 Duarte RG, Bastos AC, Castela AS, Ferreira MGS. A comparative study between Cr(VI)-containing and Cr-free films for coil coating systems. Progress in Organic Coatings. 2005;52(4):320-327. http://dx.doi.org/10.1016/j.porgcoat.2004.05.011.

23 Eivaz Mohammadloo H, Sarabi AA, Mohammad Hosseini R, Sarayloo M, Sameie H, Salimi R. A comprehensive study of the green hexafluorozirconic acid-based conversion coating. Progress in Organic Coatings. 2014;77(2):322-330. http://dx.doi.org/10.1016/j.porgcoat.2013.10.006.

24 Ramezanzadeh B, Attar MM, Farzam M. Corrosion performance of a hot-dip galvanized steel treated by different kinds of conversion coatings. Surface and Coatings Technology. 2010;205(3):874-884. http://dx.doi.org/10.1016/j.surfcoat.2010.08.028.

25 López Ibáñez R, Martín F, Ramos-Barrado JR, Leinen D. Large area zirconia coatings on galvanized steel sheet. Surface and Coatings Technology. 2008;202(11):2408-2412. http://dx.doi.org/10.1016/j.surfcoat.2007.09.016.

26 Vermoyal JJ, Frichet A, Dessemond L, Hammou A. AC impedance study of corrosion films formed on zirconium based alloys. Electrochimica Acta. 1999;45(7):1039-1048. http://dx.doi.org/10.1016/S0013-4686(99)00307-2.

27 Cerezo J, Vandendael I, Posner R, Lill K, de Wit JHW, Mol JMC, et al. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces. Surface and Coatings Technology. 2013;236(0):284-289. http://dx.doi.org/10.1016/j.surfcoat.2013.09.059.

28 Verdier S, van der Laak N, Dalard F, Metson J, Delalande S. An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings. Surface and Coatings Technology. 2006;200(9):2955-2964. http://dx.doi.org/10.1016/j.surfcoat.2004.10.139.

29 ASTM International. D2247: standard practice for testing water resistance of coatings in 100% relative humidity. West Conshohocken, PA: ASTM International; 2011. http://dx.doi.org/10.1520/D2247-11.
588696fa7f8c9dd9008b47b1 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections