Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.0925
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

YELLOW STAIN ON TINPLATE: AN APPROACH BY FTIR SPECTROSCOPY

MANCHA AMARELA EM FOLHA DE FLANDRES: UMA ABORDAGEM POR ESPECTROSCOPIA FTIR

Danglad Flores, José Angel; Mauco, Suyen; Padrón, Carlos; Barrera, Maritza

Downloads: 0
Views: 957

Abstract

Tinplate cans affected by tonality changes on their unvarnished bodies as well varnished lids were compared with other ones without defect; characterizing by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The Infrared analysis let identify on defected bodies the absorption bands for Sn-O-Sn bond at 609 and 619 cm–1; while the polymer on top cans with tonality changes showed an absorption reduction at 3000 cm–1 related to OH bonding band; as well the picks related to varnish oxide groups at range of 1700 to 600 cm–1 decreased. The results link the defect with the oxidation of protecting metal and polymer dehydration.

Keywords

Tin oxide, Absorbance total attenuated, Coating.

Resumo

Latas de folha de flandres afetadas pelas alterações de tonalidade em seus corpos não envernizados assim como as suas tampas envernizadas foram comparadas com outras sem defeito; foram caracterizadas por microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva de raios-X (EDS) e espectroscopia de infravermelho com transformada de Fourier (FTIR). A análise por infravermelhos permite identificar nos corpos defeituosos as bandas de absorção da ligacao Sn-O-Sn a 609 e 619 cm–1; enquanto que o polímero nas tampas com tonalidade alterada mostrou uma absorção reduzida a 3000 cm–1 relacionada com a banda de ligação OH; assim como os picos relacionados com os grupos de óxido do verniz no intervalo de 1700-600 cm–1 também mostraram diminuição. Os resultados ligam o defeito com a oxidação do metal protector e a desidratação do polímero.

Palavras-chave

Óxido de estanho, Total absorção atenuado, Revestimento.

Referências

1 Fondonorma. Covenin1589:2003: Hoja cromada y estañada electrolítica. Caracas: Fondonorma; 2003. p. 7-13.

2 Xia D, Wang J, Song S, Zhong B, Han Z. The corrosion behavior of lacquered tinplate in functional beverage. Advanced Materials Research. 2011;233-235:1747-1751. http://dx.doi.org/10.4028/www.scientific.net/AMR.233235.1747.

3 Zumelzu E, Cabezas C. Observations on the influence of microstructure on electrolytic tinplate corrosion. Materials Characterization. 1995;34(2):143-148. http://dx.doi.org/10.1016/1044-5803(94)00060-X.

4 Chen S, Xie L, Xue F. X-ray photoelectron spectroscopy investigation of commercial passivated tinplate surface layer. Applied Surface Science. 2013;276:454-457. http://dx.doi.org/10.1016/j.apsusc.2013.03.115.

5 Martins J. Corrosion problems in tinplate cans for storing contact glues for shoes. Engineering Failure Analysis. 2012;26:258-265. http://dx.doi.org/10.1016/j.engfailanal.2012.08.003.

6 Cook W, Romine H, inventor; Carnegie Illinois Steel Corp., assigned. Surface treatment of tinned material. United State patent US 2314818 A. 1943 Mar 23.

7 Rosalbino F, Scavino G, Mortarino G, Angelini E, Lunazzi G. EIS study on the corrosion performance of a Cr(III)-based conversion coating on zinc galvanized steel for the automotive industry. Journal of Solid State Electrochemistry. 2010;15(4):703-709. http://dx.doi.org/10.1007/s10008-010-1140-7.

8 Huang X, Li N, Wang H, Sun H, Sun S, Zheng J. Electrodeposited cerium film as chromate replacement for tinplate. Thin Solid Films. 2008;516(6):1037-1043. http://dx.doi.org/10.1016/j.tsf.2007.08.044.

9 Kim TY, Jin YS, Kyoo YK. The effect of a surface oxide layer of electrolytic tin plate on the frictional properties during the ironing operation of a two-piece can-making process. Surface and Coatings Technology. 1998;99(3):319325. http://dx.doi.org/10.1016/S0257-8972(97)00573-2.

10 Robertson GL. Food packaging: principles and practice. 3rd ed. Boca Raton: CRC Press; 2012.

11 Rath FE, inventor; Rath FE, assigned. Stain and corrosion resistant tin surface and method of producing the same. United Stated patent US 2327127 A. 1943. Aug 17.

12 Bibber JW, inventor; Sanchem, Inc., assigned. Passification of tin surface. United Stated patent US 6099714 A. 2000 Aug 8.

13 Huang B, Tornatore P, Li Y. IR and Raman spectroelectrochemical studies of corrosion films on tin. Electrochimica Acta. 2000;46(5):671-679. http://dx.doi.org/10.1016/S0013-4686(00)00660-5.

14 Tang C, Kwon Y, Leckie J. Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. Journal of Membrane Science. 2007;287(1):146-156. http://dx.doi.org/10.1016/j.memsci.2006.10.038.

15 Milosevic M, Berets SL, Fadeev AY. Single-Reflection attenuated total reflection of organic monolayers on silicon. Applied Spectroscopy. 2003;57(6):724-727. http://dx.doi.org/10.1366/000370203322005454. PMid:14658709.

16 Ramírez M, Gutiérrez J, Mojica J, Hernández G. Evaluación anticorrosiva de una resina epóxica funcionalizada y depositada sobre placas de cobre. Superficies y Vacío. 2010;23(S):176-182.

17 American Society for Testing and Materials. ASTM-A 623-02: Standard Specification for general requeriments for tin mill products. Easton: ASTM; 1982.

18 American Society for Testing and Materials. ASTM-A 624-82: Standard specification for tin plate, single reducedelectrolytic. Easton: ASTM; 1982.

19 Lee S, Younan H, Sipin Z, Zhiqiang M. Studies on electron penetration versus beam acceleration voltage in energydispersive x-ray microanalysis. In: IEEE International Conference. Proceedings of Semiconductor Electronics; 2006 Oct 29-Dec 1; Kuala Lumpur, Malaysia. New York: IEEE; 2006. p. 610-613.

20 Larena A, Pinto G, Millán F. Using the Lambert-Beer law for thickness evaluation of photoconductor coatings for recording holograms. Applied Surface Science. 1995;84(4):407-411. http://dx.doi.org/10.1016/01694332(95)00003-8.

21 Merad L, Cochez M, Margueron S, Jauchem F, Ferriol M, Benyoucef B, et al. In-situ monitoring of the curing of epoxy resins by DSC, FTIR and Raman spectroscopy. International Journal of Applied Engineering Research. 2008;3(5):627-634.

22 González M, Cabanelas J, Baselga J. Applications of FTIR on epoxy resins – identification, monitoring the curing process, phase separation and water uptake in Infrared Spectroscopy. In: Theophile T, editor. Materials science, engineering and technology. Rijeka: InTech Europe; 2012. p. 261-284.

23 Li L, Wu Q, Li S, Wu P. Study of the infrared spectral features of an epoxy curing mechanism. Applied Spectroscopy. 2008;62(10):1129-1136. http://dx.doi.org/10.1366/000370208786049204. PMid:18926023.

24 Qian X, Song L, Hu Y, Yuen R, Chen L, Guo Y, et al. Combustion and thermal degradation mechanism of a novel intumescent flame retardant for epoxy acrylate containing phosphorus and nitrogen. Industrial & Engineering Chemistry Research. 2011;50(4):1881-1892. http://dx.doi.org/10.1021/ie102196k.

25 Zhan B, Tian Y, Zhang J, Cai W. The FTIR studies on the structural and electrical properties of SnO2: films as a function of hydrofluoric acid concentration. Optoelectronics and Advanced Materials. 2010;4(8):1158-1162.

26 Diéguez A, Romano A, Morante J, Weimar U, Schweizer M, Göpel W. Morphological analysis of nanocrystalline SnO2 for gas sensor applications. Sensors and Actuators B: Chemical. 1996;31(B):1-8.
588697017f8c9dd9008b47cc tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections