Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.0996
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

INFLUÊNCIA DA MODIFICAÇÃO SUPERFICIAL SOBRE A RESISTÊNCIA À CORROSÃO DO AÇO INOXIDÁVEL AISI 204 COM REVESTIMENTO HIDROFÓBICO

INFLUENCE OF MORPHOLOGICAL ALTERATION ON CORROSION RESISTANCE OF STAINLESS STEEL AISI 204 WITH HYDROPHOBIC COATINGS

Sacilotto, Daiana Guerra; Ferreira, Jane Zoppas

Downloads: 0
Views: 1006

Resumo

Neste trabalho foi avaliada a resistência à corrosão do aço inoxidável AISI 204 revestido com filme hidrofóbico de silano. Quatro sistemas foram analisados combinando o tempo de hidrólise do silano na solução sol-gel e a rugosidade do substrato. Estes parâmetros foram definidos como: 24 horas de hidrólise e substrato rugoso (24HJ), 2 horas de hidrólise e substrato rugoso (2HJ), 2 e 24 horas de hidrólise com o substrato liso (2HN e 24HN). As amostras foram caracterizadas por diferentes técnicas: (a) microscopia eletrônica de varredura (MEV) foi usada para verificar a morfologia dos substratos; (b) medidas de ângulo de contato para verificar a eficiência do filme hidrofóbico desenvolvido neste estudo; (c) ensaios de névoa salina e espectroscopia de impedância eletroquímica (EIE) foram realizados para avaliar a resistência à corrosão. A amostra 24HJ que apresentou o maior ângulo de contato (130°) mostrou maior resistência à corrosão em comparação com as outras amostras. A metodologia usada para a obtenção do filme hidrofóbico mostrou-se eficiente para a proteção do metal base contra a corrosão.

Palavras-chave

Revestimento hidrofóbico, Ângulo de contato, Resistência à corrosão, Modificação superficial, Silano.

Abstract

This work studied the corrosion resistance of stainless steel AISI 204 coated by hydrofobic silane film. Four systems were evaluated matching silane hydrolysis time in sol-gel solution and the roughness of the substrate. These parameters were defined as: 24 hours of hydrolysis time and roughness substrate (24HJ), 2 hours hydrolysis time and roughness substrate (2HJ), 2 and 24 hours hydrolysis time with smooth substrates (2HN and 24HN). The following characterizations was applied: (a) scanning electron microscope (SEM) was used to check the substrates morphology; (b) the contact angle measurements (CA) tested the efficiency of hydrophobic film developed in this study; (c) the salt spray tests and electrochemical impedance spectroscopy (EIS) were performed for evaluating the corrosion resistance. The 24HJ presented higher water contact angle (130°) and it demonstrated greater corrosion resistance in comparison with the other samples. The methodology used to obtain the hydrophobic film presented efficient for the base metal corrosion protection.

Keywords

Hydrophobic coatings, Water contact angle, Corrosion resistance, Surface modification, Silane.

Referências

1 Roach P, Shirtcliffe NJ, Newton MI. Progress in superhydrophobic surface development. Soft Matter. 2008;4(2):224-240. http://dx.doi.org/10.1039/B712575P.

2 Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry. 2008;18(6):621-633. http://dx.doi.org/10.1039/B711226B.

3 Li XM, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews. 2007;36(8):1350-1368. http://dx.doi.org/10.1039/b602486f. PMid:17619692.

4 Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, et al. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials. 2002;14(24):1857-1860. http://dx.doi.org/10.1002/adma.200290020.

5 Dorrer C, Rühe J. Some thoughts on superhydrophobic wetting. Soft Matter. 2009;5(1):51-61. http://dx.doi.org/10.1039/B811945G.

6 Luo ZZ, Zhang ZZ, Hu LT, Liu WM, Guo ZG, Zhang HJ, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Advanced Materials. 2008;20(5):970-974. http://dx.doi.org/10.1002/adma.200701229.

7 Zhang WB, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Superhydrophobic and super-oleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials. 2013;25(14):2071-2076. http://dx.doi.org/10.1002/adma.201204520. PMid:23418068.

8 Feng LB, Li H, Song YF, Wang YL. Formation process of a strong water-repellent alumina surface by the sol–gel method. Applied Surface Science. 2010;256(10):3191-3196. http://dx.doi.org/10.1016/j.apsusc.2009.12.004.

9 Wang P, Zhang D, Qiu R, Hou B. Super-hydrophobic film prepared on zinc as corrosion barrier. Corrosion Science. 2011;53(6):2080-2086. http://dx.doi.org/10.1016/j.corsci.2011.02.025.

10 Liu T, Yiu Y, Chen S, Chang X, Cheng S. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochimica Acta. 2007;52(11):3709-3713. http://dx.doi.org/10.1016/j.electacta.2006.10.059.

11 Zand RZ, Verbekenb K, Adriaensa A. The corrosion resistance of 316L stainless steel coated with a silane hybrid nanocomposite coating. Progress in Organic Coatings. 2011;72(4):709-715. http://dx.doi.org/10.1016/j.porgcoat.2011.08.001.

12 Zand RZ, Verbekenb K, Adriaensa A. Corrosion resistance performance of cerium doped silica sol–gel coatings on 304L stainless steel. Progress in Organic Coatings. 2012;75(4):463-473. http://dx.doi.org/10.1016/j.porgcoat.2012.06.008.

13 Wenzel RN. Resistance of solid surfaces to wetting by water. Journal of Industrial and Engineering Chemistry. 1936;28(8):988-994. http://dx.doi.org/10.1021/ie50320a024.

14 Cassie ABD, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society. 1944;40:546-551. http://dx.doi.org/10.1039/tf9444000546.

15 Vanithakumari SC, George RP, Kamachi Mudali U. Influence of silanes on the wettability of anodized titanium. Applied Surface Science. 2014;292:650-657. http://dx.doi.org/10.1016/j.apsusc.2013.12.027.

16 Feng L, Zhang H, Wang Z, Liu Y. Superhydrophobic aluminum alloy surface: Fabrication, structure and corrosion resistance. Colloids and Surfaces. A, Physicochemical and Engineering Aspects. 2014;441:319-325. http://dx.doi.org/10.1016/j.colsurfa.2013.09.014.

17 Li P, Chen X, Yang G, Yu L, Zhang P. Preparation of silver-cuprous oxide/stearic acid composite coatingwith superhydrophobicity on copper substrate and evaluation of itsfriction-reducing and anticorrosion abilities. Applied Surface Science. 2014;289:21-26. http://dx.doi.org/10.1016/j.apsusc.2013.10.068.

18 Liang J, Hu Y, Wu Y, Chen H. Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution. Surface and Coatings Technology. 2014;240:145-153. http://dx.doi.org/10.1016/j.surfcoat.2013.12.028.

19 Zhu D, van Ooij WJ. Corrosion protection of AA2024-T3 by bis- [triethoxysilylpropyl]tetrasulfide in chloride solution parte 2: mechanism for corrosion protection. Corrosion Science. 2003;45:2177-2197. http://dx.doi.org/10.1016/S0010-938X(03)00061-1.
588697067f8c9dd9008b47e5 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections