Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1068
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ESTUDO DA NITRETAÇÃO POR PLASMA NA FLUÊNCIA DA LIGA TI-6Al-4V

THE INFLUENCE OF PLASMA NITRIDING ON THE CREEP BEHAVIOR OF THE TI-6Al-4V ALLOY

Almeida, Gisele Fabiane Costa; Couto, Antônio Augusto; Reis, Danieli Aparecida Pereira; Massi, Marcos; Silva Sobrinho, Argemiro Soares da; Lima, Nelson Batista de

Downloads: 1
Views: 1154

Resumo

O objetivo deste trabalho é tentar melhorar a resistência à fluência da liga Ti-6Al-4V utilizando um tratamento superficial de nitretação a plasma. A nitretação foi realizada variando parâmetros tais como tempo, temperatura e o teor de nitrogênio na atmosfera. Uma mistura de nitrogênio e argônio, com uma pequena quantidade de hidrogênio, foi utilizada a fim de determinar as melhores condições para a formação da camada de nitreto. As fases presentes detectadas por DRX nas amostras nitretadas foram as fases ε-Ti2 N e δ-TiN, além das fases α-Ti e β-Ti da matriz. A amostra nitretada com 50% de nitrogênio na atmosfera foi escolhida como a melhor condição. O aumento das intensidades relativas dos picos atribuídos as fases ε-Ti2 N e δ-TiN e a diminuição dos atribuídos à fase α indicam uma maior espessura da camada nesta condição. A espessura da camada desta amostra foi de cerca de 12μm. Subsequentemente, foi realizado um ensaio de fluência no material nas melhores condições. A resistência à fluência resultante do material nitretado mostra uma diminuição na taxa de deformação secundária e um aumento no tempo final de fluência, quando comparado com o material sem tratamento.

Palavras-chave

Ti-6Al-4V, Nitretação por plasma, Fluência.

Abstract

The aim of this work is to try to improve the creep resistance of Ti-6Al-4V alloy using a surface treatment by plasma nitriding. The nitriding was performed by varying parameters such as time, temperature and the nitrogen content in the gas atmosphere. A nitrogen-argon mixture, with a small part of hydrogen, was used in order to determine the best conditions for the formation of the nitride layer. The phases of all the nitrided samples detected by XRD were the ε-Ti2 N phase and δ-TiN, in addition to the α-Ti and β-Ti matrix phases. In the case of the treated sample with 50% nitrogen in the gas atmosphere was chosen as the best condition. The increase of the relative intensities of the peaks assigned to ε-Ti2 N and δ-TiN phases and the decrease of those assigned to the α-phase indicates a larger thickness. The layer thickness of this sample was about 12 μm. Subsequently, creep tests were performed on the material in the best condition. The creep resistance resulting from the nitrided material shows a decrease in the secondary creep rate and an increase in the final creep time when compared to the material without treatment.

Keywords

Ti-6Al-4V, Plasma nitriding, Creep.

Referências

1 Boyer RR. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A. 1996;213(1-2):103-114. http://dx.doi.org/10.1016/0921-5093(96)10233-1.

2 Dalton HR. Titanium demand and trends in the jet engine market. In: Conference Proceedings Titanium USA 2013; 2013 October 6-9; Las Vegas, USA. Northglenn: The International Titanium Association; 2013. p. 01-12.

3 International Titanium Association. Titanium: the infinite choice. Northglenn: International Titanium Association Education Committee; 2011 [acesso em 23 jul. 2014]. 24 p. Disponível em: http://c.ymcdn.com/sites/www.titanium.org/resource/resmgr/Docs/TiUltimate.pdf

4 Berberich F, Matz W, Kreissig U, Richter E, Schell N, Möller W. Structural characterisation of hardening of Ti–Al–V alloys after nitridation by plasma immersion ion implantation. Applied Surface Science. 2001;179(1-4):13-19. http://dx.doi.org/10.1016/S0169-4332(01)00256-2.

5 Gokul Lakshmi S, Arivuoli D, Ganguli B. Surface modification and characterisation of Ti–Al–V alloys. Materials Chemistry and Physics. 2002;76(2):187-190. http://dx.doi.org/10.1016/S0254-0584(01)00517-X.

6 Fouquet V, Pichon L, Drouet M, Straboni A. Plasma assisted nitridation of Ti-6Al-4V. Applied Surface Science. 2004;221(1-4):248-258.. http://dx.doi.org/10.1016/S0169-4332(03)00889-4.

7 Fouquet V, Pichon L, Straboni A, Drouet M. Nitridation of Ti6Al4V by PBII: study of the nitrogen diffusion and of the nitride growth mechanism. Surface and Coatings Technology. 2004;186(1-2):34-39. http://dx.doi.org/10.1016/j.surfcoat.2004.04.006.

8 Ma S, Xu K, Jie W. Wear behavior of the surface of Ti–6Al–4V alloy modified by treating with a pulsed d.c. plasma-duplex process. Surface and Coatings Technology. 2004;185(2-3):205-209. http://dx.doi.org/10.1016/j.surfcoat.2003.11.028.

9 Berberich F, Matz W, Richter E, Schell N, Kreißig U, Möller W. Structural mechanisms of the mechanical degradation of Ti–Al–V alloys: in situ study during annealing. Surface and Coatings Technology. 2000;128-129:450-454. http://dx.doi.org/10.1016/S0257-8972(00)00595-8.

10 Zhecheva A, Sha W, Malinov S, Long A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface and Coatings Technology. 2005;200(7):2192-2207. http://dx.doi.org/10.1016/j.surfcoat.2004.07.115.

11 Roliński E. Surface properties of plasma-nitrided titanium alloys. Materials Science and Engineering A. 1989;108:37-44. http://dx.doi.org/10.1016/0921-5093(89)90404-8.

12 Rolinski E, Sharp G, Cowgill DF, Peterman DJ. Ion nitriding of titanium alpha plus beta alloy for fusion reactor applications. Journal of Nuclear Materials. 1998;252(3):200-208. http://dx.doi.org/10.1016/S0022-3115(97)00325-5.

13 Farè S, Lecis N, Vedani M, Silipigni A, Favoino P. Properties of nitrided layers formed during plasma nitriding of commercially pure Ti and Ti–6Al–4V alloy. Surface and Coatings Technology. 2012;206(8-9):2287-2292. http://dx.doi.org/10.1016/j.surfcoat.2011.10.006.

14 Hosseini SR, Ahmadi A. Evaluation of the effects of plasma nitriding temperature and time on the characterisation of Ti 6Al 4V alloy. Vacuum. 2013;87:30-39. http://dx.doi.org/10.1016/j.vacuum.2012.06.008.

15 Lima SC. Desenvolvimento de um sistema de nitretação a plasma e investigação da atmosfera na nitretação da liga Ti-6Al-4V [dissertação de mestrado]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2010.

16 Raaif M, El-Hossary FM, Negm NZ, Khalil SM, Schaaf P. Surface treatment of Ti–6Al–4V alloy by rf plasma nitriding. Journal of Physics Condensed Matter. 2007;19(39):1-12. http://dx.doi.org/10.1088/0953-8984/19/39/396003.

17 Pohrelyuk IM, Tkachuk O V., Proskurnyak R V. Corrosion behaviour of Ti-6Al-4V alloy with nitride coatings in simulated body fluids at 36 °C and 40 °C. ISRN Corros. 2013;2013:1-7. http://dx.doi.org/10.1155/2013/241830.

18 Rahman M, Reid I, Duggan P, Dowling DP, Hughes G, Hashmi MSJ. Structural and tribological properties of the plasma nitrided Ti-alloy biomaterials: Influence of the treatment temperature. Surface and Coatings Technology. 2007;201(9-11):4865-4872. http://dx.doi.org/10.1016/j.surfcoat.2006.07.178.

19 Tang J, Liu D, Tang C, Zhang X. Surface modification of Ti-6Al-4V alloy by cathode assiting discharge setup and conventional plasma nitriding methods. Science China Technological Sciences. 2013;56(8):1858-1864. http://dx.doi.org/10.1007/s11431-013-5252-z.

20 Mubarak Ali M, Ganesh Sundara Raman S, Pathak SD, Gnanamoorthy R. Influence of plasma nitriding on fretting wear behaviour of Ti–6Al–4V. Tribology International. 2010;43(1-2):152-160. http://dx.doi.org/10.1016/j.triboint.2009.05.020.

21 Sugahara T, Reis DAP, Moura C No, Barboza MJR, Perez EAC, Piorino F No, et al. The effect of widmanstätten and equiaxed microstructures of Ti-6Al-4V on the oxidation rate and creep behavior. Materials Science Forum. 2010;636-637:657-62. http://dx.doi.org/10.4028/www.scientific.net/MSF.636-637.657.

22 American Society For Testing Materials. ASTM B265-89: standard specification for titanium and titanium alloy strip, sheet, and plate. Philadelphia: ASTM; 1990. 6 p.

23 American Society For Testing Materials. ASTM E139-11: standard test methods for conducting creep, creep rupture, and stress rupture tests of metallic materials. Philadelphia: ASTM; 2011. 11 p.

24 Roquiny P, Bodart F, Terwagne G. Colour control of titanium nitride coatings produced by reactive magnetron sputtering at temperature less than 100 °C. Surface and Coatings Technology. 1999;116-119:278-283. http://dx.doi.org/10.1016/S0257-8972(99)00076-6.

25 Fernandes AC, Vaz F, Ariza E, Rocha LA, Ribeiro ARL, Vieira AC, et al. Tribocorrosion behaviour of plasma nitrided and plasma nitrided+oxidised Ti6Al4V alloy. Surface and Coatings Technology. 2006;200(22-23):6218-6224. http://dx.doi.org/10.1016/j.surfcoat.2005.11.069.

26 Silva SLR, Kerber LO, Amaral L, dos Santos CA. X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V. Surface and Coatings Technology. 1999;116-119:342-346. http://dx.doi.org/10.1016/S0257-8972(99)00204-2.

27 Couto AA, Faldini SB, Almeida GFC, Sekeres TS, Kunioshi CT, Morcelli AE, et al. Caracterização microestrutural da liga Ti-6Al-4V comercial utilizada como biomaterial. In: Anais do 17º Congresso Brasileiro de Engenharia e Ciências dos Materiais; 2006; Foz do Iguaçu, Brasil. São Paulo: Instituto de Pesquisas Energéticas e Nucleares; 2006. 17 p.

28 Almeida GFC. Caracterização microestrutural da Liga Ti-6Al-4V comercial utilizada como biomaterial [trabalho de conclusão de curso]. São Paulo: Universidade Presbiteriana Mackenzie; 2007.

29 Molarius JM. Ti-N phases formed by reactive ion plating. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1985;3:2419-2425. http://dx.doi.org/10.1116/1.572850.

30 Brading HJ, Morton PH, Bell T, Earwaker LG. The structure and composition of plasma nitrided coatings on titanium. Nuclear Instruments and Methods in Physics Research Section Section B: Beam Interactions with Materials and Atoms. 1992;66:230-236. http://dx.doi.org/10.1016/0168-583X(92)96156-S.

31 Raveh A, Hansen PL, Avni R, Grill A. Microstructure and composition of plasma-nitrided Ti-6Al-4V layers. Surface and Coatings Technology. 1989;38:339-351. http://dx.doi.org/10.1016/02578972(89)90095-9.

32 Briguente LANS. Estudo de tratamento térmico e recobrimento como forma de barreira térmica sobre o comportamento em fluência da liga Ti-6Al-4V [dissertação de mestrado]. São José dos Campos: Instituto Tecnológico de Aeronáutica; 2011.
5886970a7f8c9dd9008b47f5 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections