Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1092
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

APPLICATION OF THE CALPHAD METHOD FOR FERRITIC BOILER STEELS

APLICAÇÃO DO MÉTODO CALPHAD A AÇOS FERRÍTICOS PARA CALDEIRAS

Schneider, André

Downloads: 1
Views: 923

Abstract

Some applications of the CALPHAD method are shown with reference to seamless tubes and pipes for high‐temperature service in power plants. The focus is on concepts on the improvement of creep strength. In view of developing or improving steels for the application in conventional power plants, various elements have been tested with respect to a controlled precipitation of chromium carbides, carbonitrides and the intermetallic Laves phase.The kinetic simulations are focussed on diffusion-controlled transformations during heat-treatment and application in the power plant. A key-issue is to include important aspects such as nucleation density (in terms of pre-defined cell sizes of the model), growth, and dissolution of precipitates.

Keywords

Steel, CALPHAD, Boiler, Diffusion simulation, Microstructure.

Resumo

Algumas aplicações do método CALPHAD a tubulações para aplicação a alta temperatura em plantas termoelétricas de alta temperatura são apresentadas. O trabalho é focalizado no desenvolvimento de concepções que resultem em aumento da resistência a fluência. Visando desenvolver e aprimorar aços para a aplicação em usinas térmicas convencionais vários elementos de liga foram investigados com vistas a precipitação controlada de carbonetos de cromo, carbonitretos e a fase intermetálica de Laves. As simulações cinéticas são focadas em transformações controladas por difusão que ocorrem durante o tratamento térmico e durante a aplicação do aço nas usinas. Um ponto chave é a inclusão de aspectos importantes como a densidade de núcleos (expressa como um tamanho de célula pré-definido no modelo), o crescimento e a dissolução dos precipitados.

Palavras-chave

Aço, CALPHAD, Caldeiras, Simulação de difusão, Microestrutura.

Referências

1 Dieulin A, Landier C, Subanovic M, Knezevic V, Cini E, Schneider A. V&M’s innovative contribution to meet the challenges of present and future conventional power plants. VGB PowerTech. 2011;11:63-68.

2 Hahn B, Bendick W. Pipe steels for modern high-output power plants. Part 1: metallurgical principles – long-term properties: recommendations for use. 3R intern. 2008;47:3-12.

3 Hahn B, Bendick W. Pipe steels for modern high-output power plants. Part 1: metallurgical principles – long-term properties: recommendations for use. Düsseldorf: Vallourec Publication; 2015 [cited 2016 Feb 4] Available from: http://www.vallourec.com/fossilpower/EN/E-Library.

4 Kaufman L, Bernstein H. Computer calculation of phase diagrams. New York: Academic Press; 1970.

5 Saunders N, Miodownik AP. CALPHAD. In: Cahn RW, editor. Pergamon Materials Series. Oxford: Elsevier Science; 1998. vol. 1.

6 Lukas H, Fries SG, Sundman B. Computational thermodynamics: the CALPHAD method. Cambridge: Cambridge University Press; 2007.

7 Hack K, editor. The SGTE casebook: thermodynamics at work. London: The Institute of Materials; 1996.

8 Schneider H. Investment casting of high-hot strength 12% chrome steel. Foundry Trade J. 1960;108:562-563.

9 Schaeffler A. Constitution diagram for stainless steel weld metal. Metal Progress. 1949;56:680-680B.

10 Vilk J, Schneider A, Inden G. Martensitic/ferritic super heat-resistant 650°C steels: thermodynamics and kinetics of precipitation reactions. In: Proceedings of the 7th Liège Conference Materials for Advanced Power Engineering 2002 Part III. 2002; Liège, Belgium. Jülich, Germany: Forschungszentrum Jülich GmbH; 2002. p. 1299-1310.

11 Knezevic V, Balun J, Sauthoff G, Inden G, Schneider A. Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling. Materials Science and Engineering. 2008;A477(1-2):334-343. http://dx.doi.org/10.1016/j.msea.2007.05.047.

12 Knezevic V, Sauthoff G, Vilk J, Inden G, Schneider A, Agamennone R, et al. Martensitic/ferritic super heat-resistant 650°C steels – design and testing of model alloys. ISIJ International. 2002;42(12):1505-1514. http://dx.doi.org/10.2355/isijinternational.42.1505.

13 Andersson JO, Ågren J. Models for numerical treatment of multicomponent diffusion in simple phases. Journal of Applied Physics. 1992;72(4):1350-1355. http://dx.doi.org/10.1063/1.351745.

14 Crusius S, Inden G, Knoop U, Höglund L, Ågren J. On the numerical treatment of moving boundary problems. Zeitschrift fur Metallkunde. 1992;83:673-678.

15 Crusius S, Höglund L, Knoop U, Inden G, Ågren J. On the growth of ferrite allotriomorphs in Fe-C. Z. Metallkde. 1992;83:729-738.

16 Inden G. Cinétique de transformation de phases dans des systems polyconstitutés – aspects thermodynamiques. Entropie. 1997;202/203:6-14.

17 Borgenstam A, Höglund L, Ågren J, Engström A. DICTRA, a tool for simulation of diffusional transformations in alloys. J. Phase Equil. 2000;21(3):269-280. http://dx.doi.org/10.1361/105497100770340057.

18 Schneider A, Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels. Acta Materialia. 2005;53(2):519-531. http://dx.doi.org/10.1016/j.actamat.2004.10.008.

19 Schneider A, Inden G. Computer simulation of diffusion controlled phase transformations. In: Raabe D, Roters F, Barlat F, Chen L-Q, editors. Continuum scale simulation of engineering materials. New York: Wiley-VCH; 2004.

20 Korcakova L, Hald J, Somers MAJ. Quantification of Laves phase particle size in 9CrW steel. Materials Characterization. 2001;47(2):111-117. http://dx.doi.org/10.1016/S1044-5803(01)00159-0.

21 Marinkovic BA, De Avillez RR, Kessler Barros S, Rizzo FC. Thermodynamic evaluation of carbide precipitates in 2.25Cr-1.0Mo steel for determination of service degradation. Materials Research. 2002;5:491-495. http://dx.doi.org/10.1590/S1516-14392002000400016.

22 Janovec J, Kroupa A, Svoboda M, Vyrostkova A, Grabke HJ. Evolution of secondary phases in Cr-V and Cr-Mo-V low alloy steels. Canadian Metallurgical Quarterly. 2005;44(2):219-232. http://dx.doi.org/10.1179/cmq.2005.44.2.219.

23 Danielsen HK, Hald J. A thermodynamic model oft he Z-phase Cr(V,Nb)N. Calphad. 2007;31(4):505-514. http://dx.doi.org/10.1016/j.calphad.2007.04.001.

24 Gustafson Å, Höglund L, Ågren J. Simulation of carbo-nitride coarsening in multicomponent Cr-steels for high temperature applications. In: Proceedings of the conference Advanced heat resistant steels for power generation. 1998; San Sebastian, Spain. London, England: IOM Communications; 1998.

25 Gustafson Å, Hättestrand M. Coarsening of precipitates in an advanced creep resistant 9% chromium steel: quantitative micrsocopy and simulations. Materials Science and Engineering A. 2002;333(1-2):279-286. http://dx.doi.org/10.1016/S0921-5093(01)01874-3.

26 Xiao X, Liu G, Hu B, Wang J, Ma W. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: experimental study combined with DICTRA simulation. Journal of Materials Science. 2013;48(16):5410-5419. http://dx.doi.org/10.1007/s10853-013-7334-5.

27 Bjärbo A, Hättestrand M. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel – an experimental and theoretical study. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2001;32(1):19-27. http://dx.doi.org/10.1007/s11661-001-0247-y.

28 De Avillez RR, Marinkovic B, Da Costa e Silva ALV, Rizzo FC. Kinetics of carbide precipitation in a 2.25Cr-1Mo steel. Proc. of the 59th Annual ABM Congress – International, 2004.

29 Holzer I, Rajek J, Kozeschnik E, Cerjak H. Simulation of the precipitation kinetics during heat treatment and service of creep resistant martensitic 9-12% Cr steel. In: Proceedings of the 8th Liège Conference Materials for Advanced Power Engineering 2006 Part III. 2006; Liège, Belgium. Jülich, Germany: Forschungszentrum Jülich GmbH; 2006. p. 1191-1198.

30 Kozeschnik E, Pölt P, Brett S, Buchmayr B. Dissimilar 2.25Cr/9Cr and 2Cr/0.5CrMoV steel welds: part 1: characterisation of weld zone and numerical simulation. Science Techn. Weld. Join. 2002;7(2):63-68. http://dx.doi.org/10.1179/136217102225003005.

31 Sonderegger B, Hacksteiner M, Mendez-Martin F, Holzer I, Kozeschnik E. Calculation of phase boundary energies and application in multicomponent steels. In: Proceedings of the 9th Liège Conference Materials for Advanced Power Engineering 2010 Part III. 2010; Liège, Belgium. Jülich, Germany: Forschungszentrum Jülich GmbH; 2010. p. 320-329.
588697027f8c9dd9008b47d4 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections