Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1149
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

LIMITE DE UMIDADE TRANSPORTÁVEL DE MINÉRIOS DE FERRO: ASPECTOS REGULATÓRIOS E TÉCNICOS

TRANSPORTABLE MOISTURE LIMIT OF IRON ORES: REGULATORY AND TECHNICAL ASPECTS

Rodrigo Fina Ferreira, Dany Luiz Vieira Policarpo, Victor Pereira Padula, Marco Tulio Santiago Ferreira

Downloads: 7
Views: 692

Resumo

Materiais sólidos a granel, contendo umidade, podem estar sujeitos a rupturas, deslizamentos e liquefação. Cargas de minério transportadas em navios não estão isentas destes fenômenos, que colocam em risco as embarcações. Nos últimos 30 anos ocorreram pelo menos 24 acidentes marítimos tendo como causa atribuída a liquefação da carga, somando mais de 177 vítimas fatais. A Organização Marítima Internacional (IMO), braço da ONU que regulamenta o transporte marítimo, estabelece orientações e leis que visam garantir a segurança das operações. Para prevenir a liquefação e fenômenos relacionados, a IMO estabeleceu o Limite de Umidade Transportável (TML), e indicava três métodos para sua determinação: Proctor /Fagerberg, Flow Table e Penetration. Um amplo estudo apresentado à IMO em 2013 concluiu que estes métodos não são adequados para finos de minério de ferro, tendo sido desenvolvido um novo teste, o Proctor/Fagerberg Modificado. O presente trabalho apresenta aspectos regulatórios e técnicos do TML, e um comparativo entre o TML de 35 amostras obtidos pelos três métodos originais, mostrando diferenças significativas entre os resultados, uma evidência de sua inadequação.

Palavras-chave

Limite de Umidade Transportável; TML; Transporte marítimo; Minério de ferro

Abstract

Bulk solid materials containing some amount of moisture may be susceptible to stockpile failure, sliding and liquefaction. Ore cargoes transported by ships are not free from these phenomena, which put the vessels at risk. At least 24 maritime accidents, which attributable cause is liquefaction, happened in the last 30 years, with more than 177 fatal victims. The International Maritime Organization, the United Nations section that regulates maritime transportation, sets guidance and laws that aim to guarantee the operations safety. To prevent liquefaction and related phenomena the IMO stated the Transportable Moisture Limit (TML), and indicated three test methods for its determination: Proctor/Fagerberg, Flow Table and Penetration. A vast study presented to the IMO in 2013 have concluded that these methods are not representative for iron ore fines, and a new test method have been developed, the Modified Proctor /Fagerberg. This paper presents regulatory and technical aspects of the TML, and a comparative evaluation between the TML of the three original test methods for 35 samples, showing significant differences between the results, an evidence of the inadequacy of these methods.

Keywords

Transportable Moisture Limit; TML; Maritime transportation; Iron ore.

Referências

1 Departamento Nacional da Produção Mineral. Sumário mineral. Brasília: DNPM; 2016. vol. 35.

2 Man Diesel & Turbo. Propulsion trends in bulk carriers: two-stroke engines. Copenhagen: Man Diesel & Turbo; 2014.

3 Tang XW, Zhang XW, Uzuoka R. Novel adaptive time stepping method and its application to soil seismic liquefaction analysis. Soil Dynamics and Earthquake Engineering. 2015;71:100-113.

4 Pereira EL. Estudo do potencial de liquefação de rejeitos de minério de ferro sob carregamento estático [dissertação de mestrado]. Ouro Preto: Universidade Federal de Ouro Preto; 2005.

5 Ishihara K. Liquefaction of subsurface soils during earthquakes. Journal of Disaster Research. 2006;1(2)

6 Fagerberg B. Hazards of shipping granular ore concentrates. Canadian Mining Journal. 1965;856:53-57.

7 Fagerberg B, Stavang A. Determination of critical moisture contents in ore concentrates carried in cargo vessels. In: Proceedings of the 1st International Symposium on Transport and Handling of Minerals. 1971; Vancouver, Canadá. São Francisco: Miller Freeman Publications; 1971. p. 174-185.

8 GCaptain. Bulk jupiter sinking prompts bauxite liquefaction warnings [Acesso em 23 maio 2015]. http://gcaptain.com/bulk-jupiter-sinking-prompts-bauxite-liquefaction-warnings

9 International Maritime Organization. International maritime solid bulk cargoes code. London: IMO; 2012. 10 American Society for Testing and Materials. ASTM designation C230-standard specification for flow table for use in tests of hydraulic cement. West Conshohocken: ASTM; 1952.

11 American Society for Testing and Materials. ASTM designation C124-method of test for flow of portland-cement concrete by use of the flow table. West Conshohocken: ASTM; 1971.

12 Tanaka M, Ura T. Development of the penetration method for mineral concentrates. London: International Maritime Organization; 1989. BC 30/5/12.

13 International Maritime Organization. DSC 1 /Circ. 66. Carriage of iron ore fines that may liquefy. London: IMO; 2011.

14 International Maritime Organization. Inadequacy of current IMSBC code methodologies to transportable moisture limit determination on Brazilian Iron Ore Fines, 17th Session, Agenda Item 4, DSC 17/INF.10. London: IMO; 2012.

15 International Maritime Organization. The safe carriage of Brazilian iron ore fines, 17th Session, Agenda Item 4, DSC 17/INF.11. London: IMO; 2012.

16 International Maritime Organization. The Cyclic Triaxial Criteria (CTC) as an adequate protocol to assess the safe carriage condition of iron ore fines in bulk, 17th Session, Agenda Item 4, DSC 17/4/23. London: IMO; 2012.

17 International Maritime Organization. The corrected Proctor/Fagerberg method as an adequate protocol to assess the Transportable Moisture Limit (TML) of iron ore fines in bulk, 17th Session, Agenda Item 4, DSC 17/4/24. London: IMO; 2012.

18 International Maritime Organization. DSC18/ INF.10. Report 1: terms of reference. The iron ore fines technical working group (Vale, Rio Tinto, BHP Billiton) facilitated by International Group of P&I Clubs (IG). London: IMO; 2013.

19 International Maritime Organization. DSC18/ INF.11. Report 2: marine report. the iron ore fines technical working group (Vale, Rio Tinto, BHP Billiton) facilitated by International Group of P&I Clubs (IG). London: IMO; 2013.

20 International Maritime Organization. DSC18/ INF.12. Report 3: iron ore Proctor/Fagerberg test. The iron ore fines technical working group (Vale, Rio Tinto, BHP Billiton) facilitated by International Group of P&I Clubs (IG). London: IMO; 2013.

21 International Maritime Organization. DSC18/ INF.13. Report 4: reference tests. the iron ore fines technical working group (Vale, Rio Tinto, BHP Billiton) facilitated by International Group of P&I Clubs (IG). London: IMO; 2013.

22 International Maritime Organization. DSC. 1 /Circ. 71. Early implementation of draft amendments to the IMSBC code related to the carriage and testing of iron ore fines, sub-committee for dangerous cargoes, solids and containers. London: IMO; 2013.

23 Associação Brasileira de Normas Técnicas. NBR 16317:2014: Minérios de ferro - Procedimentos para controle de umidade nos portos do Brasil para segurança no transporte marítimo de cargas. Rio de Janeiro: ABNT; 2014.

24 Associação Brasileira de Normas Técnicas. NBR ISO 3082: Minérios de Ferro – procedimentos de amostragem e preparação de amostras. Rio de Janeiro: ABNT; 2011.

25 Associação Brasileira de Normas Técnicas. NBR ISO 3087: Minérios de Ferro – determinação do teor de umidade de um lote. Rio de Janeiro: ABNT; 2012.

26 American Society for Testing and Materials. ASTM D5550-14: Standard test method for specific gravity of soil solids by gas pycnometer. West Conshohocken: ASTM; 2014

58a47e870e8825875aea726f tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections