Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1182
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EFEITO DE DIFERENTES TRATAMENTOS TÉRMICOS SOBRE MICROESTRUTURA E MICRODUREZA DE UM SISTEMA AÇO C-Mn/REVESTIMENTO DE INCONEL 625

EFFECT OF DIFFERENT HEAT TREATMENTS ON MICROSTRUCTURE AND MICROHARDNESS OF A C-Mn STEEL/INCONEL 625 COATING SYSTEM

Downloads: 0
Views: 448

Resumo

A utilização de tubos de aço C-Mn na indústria de óleo e gás é muito comum desde o nascimento desta indústria. Mesmo com a grande evolução da metalurgia destes aços ao longo das últimas décadas, o desafio de desempenho em ambientes severos de corrosão devido às características reativas (H2 S, CO2 ) do petróleo e seus derivados, impõem uma nova era para a fabricação de tubos. A solução tecnológica mais direta seria a utilização de aços com alta liga (Ni, Cr) e/ou superligas de níquel. No entanto, os custos de produção tornariam inviáveis pelo alto custo destes materiais. Neste contexto, é crescente iniciativas de pesquisas para o desenvolvimento de overlay e/ou cladding, ou seja, revestimentos de aços C-Mn usando superligas de níquel e aços inoxidáveis. Neste trabalho, foi utilizada a deposição de uma camada da superliga de níquel Inconel 625 através do processo laser. Uma das desvantagens da deposição a laser ou qualquer outro processo de fusão é a formação de uma região de descontinuidade microestrutural no aço, chamada de ZTA (zona termicamente afetada pelo calor). Neste estudo, diferentes rotas de tratamentos térmicos foram investigadas com o objetivo de eliminar a ZTA e preservar as características originais do substrato e do revestimento.

Palavras-chave

Revestimento inconel 625/aço C-Mn, Perfil de microdureza, Transformação de fase, Martensita revenida, ZTA, Tratamentos térmicos.

Abstract

The application of C-Mn steel pipe in the oil & gas industry is quite common since starting of this industry. Even with the great evolution of the metallurgy of this type of steel over the last decades, the challenge is to overcome the corrosion severity caused by sour (H2 S, CO2 ) species present in the petroleum and its derivates. The direct technological solution would be to replace the C-Mn steel by Ni-based superalloys and/or stainless steels. However, the high costs of these materials would make several projects impracticable. In this context, there are several initiatives in order to develop overlay and/or cladding, that means, coatings of C-Mn steels using superalloys and stainless steels. In this work, it was used an overlay deposition of Inconel 625 on the surface of a C-Mn steel using the laser process. A disadvantage of laser deposition, as it is for any deposition melting process, is the formation of a microstructural discontinuity in the steel substrate caused by the thermal cycle (HAZ = heat affected zone). In this study, different heat treatment routes were investigated aiming to eliminate the HAZ preserving the original characteristics of the substrate and of the coating.

Keywords

Inconel 625 overlay/C-Mn steel, Microhardness profile, Phase transformation, Tempered martensite, HAZ, Heat treatments.

Referências

1 Joosten MW. Corrosion of carbon steels by H2 S in CO2 containing oilfield environments; 10 year update. In: Nace Corrosion Conference; 2015. 2015.

2 Lin T., Zhang Q., Lian Z., Liu Y. Evaluation of casing integrity defects considering wear and corrosion: application to casing design. Journal of Natural Gas Science and Engineering, 2016;29:440-452.

3 Gao D., Sun L., Lian J. Prediction of casing wear in extended-reach drilling. Petroleum Science. 2010;7(4):494-501.

4 Rodriguez MALH, Delgado DIM, Gonzalez JR, Rodriguez J. Corrosive wear failure analysis of a material gas pipeline. Wear. 2007;263(1-6):567-571.

5 Kaldal GS, Jonsson M, Palsson H, Karlsdottir SN. Structural modeling of the casings in high temperature geothermal wells. Geothermics. 2015;55:126-137.

6 Zeng Y, Guzonas D. Corrosion assessment of candidate materials for fuel cladding in Canadien SCWR. Journal of the Minerals Metals & Materials Society. 2015;68(2):475-479.

7 Borgstedt H. U. Das Korrosionsverhalten der Nickelbasislegierung Inconel 625. Materials and Corrosion. 1966;17(12):1027-1033.

8 Dinda GP, Dasgupta AK, Mazumder J. Laser aided direct metal deposition of inconel 625 superalloy: microstructural evolution and thermal stability. Materials Science and Engineering A. 2009;509(1-2):98-104. http://dx.doi.org/10.1016/j.msea.2009.01.009.

9 Pajukoski H, Nakki J, Thieme S, Tuominen J, Nowotny S, Vuoristo P. High performance corrosion resistant coatings by novel coaxial cold- and hot- wire laser cladding methods. Journal of Laser Applications. 2016;28:1.

10 Pontarrollo A, Vezzu S, Trentin A, Rech S, Guidolin M, Cafissi A, et al. Characterisation of Inconel 625 coatings deposited by cold spray. In: International Thermal Spray Conference; 2011; Hamburg, Germany. 2011.

11 Michiels J. Characterization and optimization of laser cladding inconel 625 alloy on A36 structural steel [dissertação de mestrado]. Illinois: Institute of Technology; 2006.

12 Abioye TE, McCartney DG, Clare AT. Laser cladding of Inconel 625 wire for corrosion protection. Journal of Materials Processing Technology. 2016;217;232-240.

13 Rajania HRZ, Mousavia SAAAFM. Sani, Comparison of corrosion behavior between fusion cladded and explosive cladded inconel 625/plain carbon steel bimetal plates. Materials & Design. 2012;43:467-474.

14 American Society for Metals – ASM. Metals Handbook: welding, brazing and soldering. 9. ed. Ohio: Metals Park; 1983. vol. 6.

15 American Petroleum Institute – API. API 5CT: specification for casing and tubing. 2011.

16 Shuai L, Quingsong W, Zicheng Z. Microestructure characteristics of Inconel 625 superally manufactured by selective laser melting . Journal of Materials Science and Technology. 2015;31(9):1-7.

17 Fujia X, Yaohui L, Yuxin L, Binshi X, Peng H. Effect of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by pulsed plasma arc deposition. Physics Procedia. 2013;50:48-54. http://dx.doi.org/10.1016/j.phpro.2013.11.010.

18 Xing X, Di X, Wang B. The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal. Journal of Alloys and Compounds. 2014;593:110-116. http://dx.doi.org/10.1016/j.jallcom.2013.12.224.

19 Xueda L, Cheng JS. Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Materials Science and Engineering A. 2014;616:141-147. http://dx.doi.org/10.1016/j.msea.2014.07.100.

20 Ma L, Maoqui W, Xu SQ, Dong HB. Austenite grain size and hardenability of Nb-B microalloyed gear steels. Transactions of Materials and Heat Treatment. 2009;30(5):74-78.

21 Yunan P, Jasmawati M, Kasni S. Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel. Journal of Materials Science and Technology. 2012;28(5):461-466.

5b7ec8e30e8825f339896e51 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections