Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1362
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

PROCESSO DE SOLDAGEM POR FRICÇÃO COM PINO CONSUMÍVEL SFPC APLICADO NO AÇO INOXIDÁVEL DUPLEX SAF 2205

FRICTION HYDRO PILLAR PROCESSING (FHPP) APLIED IN DUPLEX STAINLESS STEEL SAF 2205

Douglas Martinazzi; Cleber Rodrigo de Lima Lessa; Arlan Pacheco Figueiredo; Afonso Reguly

Downloads: 2
Views: 377

Resumo

A presente investigação demonstra a utilização do processo de Soldagem por Fricção com Pino Consumível (SFPC), ou Friction Hydro Pillar Processing (FHPP), para reparar estruturas que contenham o aço inoxidável duplex SAF 2205 (AID UNS S31803) como material base. Para tanto, foi realizado um estudo preliminar relativo ao mesmo material reparado com o processo Tungsten Inert Gas (TIG). Após a obtenção das juntas reparadas em ambos os processos, estas passaram por rigorosa análise microestrutural e ensaios mecânicos para, dessa forma, qualificá-las através de critérios usuais recomendados em normas que regulamentam a utilização deste material no reparo de estruturas. Foram investigadas as propriedades metalúrgicas através de microscopia ótica e eletrônica de varredura, fractografia e EDS (energy dispersive x-ray), além de ensaios de corrosão. Já as propriedades mecânicas foram averiguadas através de ensaios de impacto, de dobramento e perfis de microdureza. Com o intuito de garantir a qualidade da junta soldada e, por sua vez, a segurança da estrutura reparada, o processo FHPP atendeu aos requisitos recomendados pelas normas DNV-RP-F112 e DNV-OS-F101.

Palavras-chave

Reparo de estruturas; Aço inoxidável duplex; FHPP; Fases intermetálicas.

Abstract

The present investigation demonstrates the use of the Friction Hydro Pillar Processing (FHPP) to repair structures containing SAF 2205 (AID UNS S31803) duplex stainless steel (DSS) as the base material. Therefore, a preliminary study was carried out regarding the same material repaired with the Tungsten Inert Gas process (TIG). After obtaining the repaired joints in both processes, they underwent rigorous microstructural analysis and mechanical tests to qualify them through the usual criteria recommended in standards which regulate the use of this material, the DSS SAF 2205, in the repair of structures. The metallurgical properties were investigated by optical and scanning electronic microscopy, fractography and EDS (energy dispersive x-ray) in addition to corrosion tests. The mechanical properties were investigated through impact tests, bending tests and microhardness profiles. With the purpose to guarantee the quality of the welded joint and, in turn, the safety of the repaired structure, the FHPP process met the requirements recommended by the standards DNV-RP-F112 and DNV-OS-F101.

Keywords

Structural repair; Duplex stainless steel; FHPP; Intermetallic phases.

Referências

1 Meyer A. Friction hydro pillar processing - bonding mechanism and properties. Springer: Wilhelm-Johnen-Strasse; 2003. GKSS School of Environmental Research Series.

2 Jardim MP, Gonçalves RA, Paes MTP, Pires RR, Franco VLDS. Efeito da geometria do pino e do furo no reparo por atrito resultados preliminares. Tecnol Em Metal E Mater. 2007;4(2):27-32.

3 Lessa CR L, Martinazzi D, Figueiredo AP, Machado RB, Fanezi C, Strohaecker T. Microstructural behavior of SAF 2205 Duplex Stainless Steel Welded by Friction Hydro Pillar Processing. Materials Research. 2016;19(4):928-936.

4 Yeh FWT, Pereira da Cunha PHC, Lessa CR L, Clarke T, Strohaecker T. Evaluation of Discontinuities in A36 Steel Repairs with Friction Hydro Pillar Processing Using Different Axial Forces. ISIJ International. 2013;53(12):2269-2271.

5 Alvarez-Armas I, Degallaix-Moreuil S. Duplex stainless steels. Hoboken: John Wiley & Sons Inc.; 2009.

6 Colpaert H. Metalografia dos produtos siderúrgicos comuns. 4. ed. Brasil: Blucher; 2008. 672 p.

7 Folkhard E, Rabensteiner G, Perteneder E, Schabereiter H, Tösch J. Welding metallurgy of stainless steels. New York: Springer-Verlag Wien; 1988.

8 Ambroziak A, Gul B. Investigations of underwater FHPP for welding steel overlap joints. Archives of Civil and Mechanical Engineering. 2007;7(2):67-76.

9 Blakemore G. Friction welding - technology for the new millennium. In: Proceedings of The Offshore Technology Conference; 1999; Houston, Texas. Richardson: One Petro; 1999 [acesso em 2013 Abr 12]. Disponível em: http://www.onepetro.org/mslib/servlet/onepetropreview?id=OTC-11063-MS

10 Meyer A, Pauly D, Santos JF, Pinheiro G, Roos A, Gibson D, et al. Considerations on robotic friction stitch welding for the repair of marine structures. In: Proceedings of The 20th International Conference on Offshore Mechanics and Arctic Engineering – OMAE; 2001 June 3-8; Rio de Janeiro. New York: American Society of Mechanical Engineers; 2001. p. 145-151.

11 Santos GM, Formoso CM, Franco SD, Franco VLDS. Optimization of control parameters in a friction hydro pillar processing unit to repair oil steel structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2012 [acesso em 26 set. 2014];5:572-582. Disponível em: http://www.abcm.org.br/pt/wp-content/anais/cobem/2011/PDF/265802.PDF

12 Baosheng Z, Xiangdong J, Jiaqing C, Zong YQ. Numerical simulation onto the preliminary period of Friction Hydro Pillar Processing in Friction Stitch Welding. In: Proceedings of the International Conference on Mechanic Automation and Control Engineering – MACE; 2010 Jun 26-28; Wuhan, China. Piscataway: IEEE Conference Publications; 2010. p. 5617.

13 Pires RR. Efeitos da geometria, da força axial e da rotação no reparo por atrito. Uberlândia: Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia; 2007.

14 Santos GM, Formoso CM, Franco SD, Franco VLDS. Optimization of control parameters in a friction hydro pillar processing unit to repair oil steel structures. Rio de Janeiro: ABCM; 2012. (ABCM Symposium Series in Mechatronics; vol. 5).

15 Det Norske Veritas. Submarine pipeline systems: DNV-OS-F101. Oslo: DNV; 2012.

16 Det Norske Veritas. Design of duplex stainless steel subsea equipment exposed to cathodic protection: DNV-RP-F112. Oslo: DNV; 2008.

17 E04 Committee. Practice for determining the inclusion or second-phase constituent content of metals by automatic image analysis [internet]. West Conshohocken: ASTM International; 2008 [acesso em 15 out. 2014]. Disponível em: http://www.astm.org/doiLink.cgi?E1245

18 E04 Committee. Test method for determining volume fraction by systematic manual point count [internet]. West Conshohocken: ASTM International; 2011 [acesso em 15 out. 2014]. Disponível em: http://www.astm.org/doiLink.cgi?E562

19 E04 Committee. Test methods for determining average grain size [internet]. ASTM International; 2013 [acesso em 4 out. 2014]. Disponível em: http://www.astm.org/doiLink.cgi?E112

20 Cui L, Yang X, Wang D, Hou X, Cao J, Xu W. Friction taper plug welding for S355 steel in underwater wet conditions: Welding performance, microstructures and mechanical properties. Materials Science and Engineering A. 2014;611:15-28.

21 Lippold JC, Varol I. Baeslack W III. Composition and microstructure on the haz toughness of duplex stainless steels at -20C. Welding Journal. 1994:75-80

22 American Society for Testing and Materials. Notched bar impact testing of metallic materials: ASTM E23 -12C. West Conshohocken: ASTM; 2012.

23 Cui L, Yang X, Wang D, Cao J, Xu W. Experimental study of friction taper plug welding for low alloy structure steel: Welding process, defects, microstructures and mechanical properties. Materials & Design. 2014;62:271-281.

24 Unfried SJ, Paes MTP, Hermenegildo TFC, Bastian FL, Ramirez AJ. Study of microstructural evolution of friction taper plug welded joints of C–Mn steels. Science and Technology of Welding and Joining. 2010;15(6):506-513.

25 Unfried J, Hermenegildo TFC, Paes MTP, Pope A, Ramirez AJ. Influence of Process Parameters in the TMAZ Microstructural Evolution of C-Mn Steels Friction Hydro-Pillar Welded Joints. In: Proceedings of The 8th International Conference of Trends Welding Research; 1-6 June 2008; Georgia. Ohio: ASM; 2008; p. 381-384.

26 Escriba DM, Materna-Morris E, Plaut RL, Padilha AF. Chi-phase precipitation in a duplex stainless steel. Materials Characterization. 2009;60(11):1214-1219.

27 Lessa CR L. Soldagem FHPP - processo e metalurgia nas transformações das fases de um aço C-Mn. Porto Alegre: UFRGS; 2011.

28 American Society for Testing and Materials. Standard test methods for detecting detrimental intermetallic phase in duplex austenitic/ferritic stainless steels: ASTM A923-14. West Conshohocken: ASTM; 2014.

29 Chen T, Weng K, Yang J. The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Materials Science and Engineering A. 2002;338(1–2):259-270.

30 Gunn R. Duplex stainless steels: microstructure, properties and applications. Illinois: Woodhead Publishing Elsevier; 2003. 216 p.

31 Totten G. Steel heat treatment: metallurgy and technologies. Boca Raton: Taylor & Francis Group; 2006. 832 p.

32 Angelini E, De Benedetti B, Rosalbino F. Microstructural evolution and localized corrosion resistance of an aged superduplex stainless steel. Corrosion Science. 2004;46(6):1351-1367.

33 Pohl M, Storz O, Glogowski T. Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization. 2007;58(1):65-71.

5bb26f9b0e8825d13cbd3c08 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections