Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1476
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

CARACTERIZAÇÃO DE UMA JUNTA SOLDADA DE INCONEL 625 OBTIDA PELO PROCESSO FRICTION STIR WELDING

CHARACTERIZATION OF A FRICTION STIR WELDED INCONEL 625 JOINT

Douglas Martinazzi, Guilherme Vieira Braga Lemos, Alexandre Bellegard Farina, Luciano Bergmann, Jorge Fernandez dos Santos, Afonso Reguly

Downloads: 0
Views: 333

Resumo

Uma liga a base de Níquel, popularmente conhecida como Inconel 625, foi estudada no presente trabalho. O processo Friction Stir Welding (FSW) foi realizado com duas velocidades de rotação da ferramenta (1200 e 200 rpm) e velocidade de soldagem entre 1 mm/s. Adicionalmente, análises metalográficas e de microdureza foram realizadas nas juntas soldadas. A aplicação da soldagem no estado sólido foi efetiva e ocasionou um aumento de dureza nas juntas soldadas. Notou-se que um aporte térmico reduzido (velocidade rotação 200 rpm) é aconselhável de modo a produzir juntas soldadas livres de defeitos. Por outro lado, um maior velocidade de rotação (1200 rpm) causou um aumento excessivo no aporte térmico e a presença de porosidades.

Palavras-chave

Inconel 625; Soldagem por fricção e mistura mecânica; Velocidade de rotação da ferramenta; Microestrutura.

Abstract

A Nickel superalloy, Inconel 625, was studied in the current work. Friction Stir Welding was carried out with tool rotational speeds ranging from 1200 to 200 rpm and welding speed between of 1 mm/s. In addition, metallographic and microhardness analyzes were performed in the joints. The solid state process was effective and resulted in increased microhardness in the welded joints. Finally, it is suggested that a lower heat input leads to sound welds. Increasing the tool rotational speed (1200 rpm) achieved a higher heat input and porosity formation

Keywords

Inconel 625; Friction stir welding; Tool rotational speed; Microstructure.

Referências

1 Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. Journal of Propulsion and Power. 2006;22(2):361-374.

2 Lemos GVB, Simoni L, Bergmann L, Souza D, Araujo DB, Santos JF, et al. Caracterização preliminar da microestrutura em cordões de solda da liga 625 produzidos através dos processos de SFMM e MIG. In: Anais do 41° Congresso Nacional De Soldagem; Salvador, Bahia. Associação Brasileira de Soldagem, São Paulo; 2015

3 Avery RE, Tuthill AH. Guidelines for welded fabrication of nickel alloys for corrosion resistante service. USA: A Nickel Development Institute; 1994. 35 p.

4 Sorensen CD, Nelson TW: ‘Friction stir welding of ferrous and nickel alloys’, in ‘Friction stir welding and processing’, (ed., Mishra R S, Mahoney M W, ed), Vol. 6, 111–121; 2007, Materials Park, OH, ASM International.

5 Davis JR, editor. Corrosion of weldments. USA: ASM International; 2006

6 Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ. Friction-stir butt welding. GB Patent UK 9125978.8, International patent application No. PCT/GB92/02203. 1991.

7 Lemos GVB, Hanke S, Santos JF, Bergmann L, Reguly A, Strohaecker TR. Progress in friction stir welding of Ni alloys. Science and Technology of Welding and Joining. 2017;22(8):643-657. http://dx.doi.org/10.1080/13621718.2017.1288953.

8 International Organization for Standardization. ISO 25239-1:2011: Friction stir welding — Aluminium — Part 1: vocabular. Genebra: ISO; 2011.

9 Zucchi F, Trabanelli G, Grassi V. Pitting and stress corrosion cracking resistance of friction stir welded AA 5083. Materials and Corrosion. 2001;52(11):853-859.

10 Peel M, Steuwer A, Preuss M, Withers PJ. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia. 2003;51(16):4791-4801.

11 Gharacheh MA, Kokabi AH, Daneshi GH, Sarrafi SR. The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds. International Journal of Machine Tools & Manufacture. 2006;46:1983-1987.

12 Perrett J, Martin J, Peterson J, Steel R, Packer S. Friction stir welding of industrial steels. Friction Stir Welding and Processing. 2011;6:65-72.

13 Farina AB. Efeito do teor de ferro e do tratamento térmico na microestrutura e propriedades da liga UNS N06625. [tese]. São Paulo: Universidade de São Paulo; 2014.

14 Ferrer L, Pieraggi B, Uginet JF. Microstructural evolution during the thermomechanical processing of alloy 625. In: Loria EA. Superalloys 718, 625 and various derivatives. Canada: The Minerals, Metals and Materials Society; 1991. p. 217-228.

15 American Society for Testing and Materials. ASTM Standard B446. Standard Specification for Nickel-ChromiumMolybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650)* Rod and Bar. West Conshohocken: ASTM International; 2008. http://dx.doi.org/10.1520/B0446-03R08E01.

5b869a410e8825b844e4c89d tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections