Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.1564
Tecnologia em Metalurgia, Materiais e Mineração
Especial ABM Week 2017

ANÁLISE DO COMPORTAMENTO CORROSIVO EM MEIO ÁCIDO DO AÇO API5L-X65 SOB DIFERENTES CONDIÇÕES DE DEFORMAÇÃO PLÁSTICA

ANALYSIS OF CORROSIVE BEHAVIOR IN ACID MEDIUM OF API5LX65 UNDER DIFFERENT CONDITIONS OF PLASTIC DEFORMATION

Mariana Cristina de Oliveira, Rodrigo Monzon Figueredo, Roberto Zenhei Nakazato, Heloisa Andréa Acciari, Eduardo Norberto Codaro

Downloads: 1
Views: 1091

Resumo

O aço API 5L X65 é amplamente utilizado para a transferência do petróleo estabilizado e do gás natural processado. Devido às longas distâncias que as tubulações devem percorrer, estas ficam sujeitas às irregularidades do relevo tanto em terra como no mar como também às características naturais do meio onde operam. As principais causas de ruptura em tubulações são atribuídas a deslizamentos de terra ou areia, flambagem, fadiga e corrosão. Neste contexto, estudou-se a corrosão deste aço à temperatura ambiente quando deformado plasticamente. Para tanto, amostras retiradas de um tubo foram tracionadas e deformadas plasticamente de 0,5 a 2,5% e caracterizada a microestrutura. A partir dos ensaios eletroquímicos de corrosão em solução NACE 177-A concluiu-se que a deformação plástica não modifica significativamente o mecanismo e a velocidade de corrosão, mas torna este aço mais suscetível à fragilização pelo hidrogênio nas condições adotadas neste trabalho

Palavras-chave

API 5L X65; Deformação plástica; Corrosão; Fragilização pelo hidrogênio.

Abstract

The API 5L X65 steel is widely used for the transfer of stabilized petroleum and processed natural gas. Due to the long distances that the pipes must travel, they are subject to irregularities of terrestrial and maritime relief, as well as to the natural characteristics of the environment in which they operate. The main causes of pipe rupture are attributed to landslides or sand, buckling, fatigue and corrosion. In this context, the corrosion of API5LX65 steel under different plastic deformation conditions was studied at room temperature. For this purpose, samples taken from a tube were extracted and plastically deformed from 0.5 to 2.5%, and then their microstructures were characterized. It was concluded from the electrochemical corrosion tests in NACE 177-A solution that the plastic deformation does not significantly modify the mechanism and the corrosion rate, but this steel becomes more susceptible to the embrittlement by hydrogen in the conditions of this work.

Keywords

API 5L X65; Plastic deformation; Corrosion; Hydrogen induced cracking.

Referências

1 Misseno C, Morilla C. Aços de alta resistência e baixa liga em oleodutos e gasodutos. UNISANTA Science and Technology. 2012;1(1):20-24.

2 Monte IR. Caracterização microestrutural do aço API 5L X65 soldado por feixe de elétrons com diferentes aportes térmicos [dissertação]. Lorena: Escola de Engenharia, Universidade de São Paulo, 2013. http://dx.doi. org/10.11606/D.97.2013.tde-07102013-114545.

3 Meresht ES, Farahani TS, Neshati J. 2-Butyne-1, 4-diol as a novel corrosion inhibitor for API X65 steel pipeline in carbonate / bicarbonate solution. Corrosion Science. 2012;54:36-44. http://dx.doi.org/10.1016/j.corsci.2011.08.052.

4 Ju J, Lee J, Jang J, Kim W, Kwon D. Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method. International Journal of Pressure Vessels and Piping. 2003;80(9):641- 646. http://dx.doi.org/10.1016/S0308-0161(03)00131-5.

5 Acosta DFB, Palmeira EM. Influência de reforço geossintético no comportamento de dutos enterrados. In: Anais do XVIII Congresso Brasileira de Mecânica dos Solos e Engenharia Geotécnica; 2016 Outubro 19-22; Belo Horizonte, Brasil. São Paulo: ABMS, 2016.

6 Almeida JC, Zanette LA. Flambagem vertical em tubulações de distribuição de gás natural. Revista TécnicoCientífica do CREA-PR. 2017;7:1-17.

7 Terzi R, Mainier FB. Monitoramento da corrosão interna em plataformas offshore. Tecno-Lógica. 2008;12(1):14-21.

8 International Energy Agency. World energy outlook. Paris: IEA; 2008.

9 National Association of Corrosion Engineers. ANSI/NACE TM0177: standard test method laboratory testing of metals for resistance to sulfide stress cracking and stress corrosion cracking in H2S environment. Houston: NACE International; 2016.

10 Kittel J, Smanio V, Fregonese M, Garnier L, Lefebvre X. Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: Impact of time of exposure on the extent of damage. Corrosion Science. 2010;52(4):1386- 1392. http://dx.doi.org/10.1016/j.corsci.2009.11.044.

11 Mohtadi-Bonab MA, Szpunar JA, Razavi-Tousi SS. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels. Engineering Failure Analysis. 2013;33:163-175. http://dx.doi.org/10.1016/j. engfailanal.2013.04.028.

12 Möller H, Boshoff ET, Froneman H. The corrosion behaviour of a low carbon steel in natural and synthetic seawaters. Journal of the South African Institute of Mining and Metallurgy. 2006;106:585-592.

13 Poorqasemi E, Abootalebi O, Peikari M, Haqdar F. Investigating accuracy of the Tafel extrapolation method in HCl solutions. Corrosion Science. 2009;51(5):1043-1054. http://dx.doi.org/10.1016/j.corsci.2009.03.001.

14 Tan YJ, Bailey S, Kinsella B. The monitoring of the formation and destruction of corrosion inhibitor films using electrochemical noise analysis (ENA). Corrosion Science. 1996;38(10):1681-1695. http://dx.doi.org/10.1016/S0010- 938X(96)00061-3.

15 Fragiel A, Schouwenaarf R, Guardian R, Pérez R. Microstructural characteristics of different commercially available API 5L X65 steels. Journal of New Materials for Electrochemical Systems. 2005;8:115-119.

16 Tait W. An introduction to electrochemical corrosion testing for practicing engineers and scientists. PairODocs Publ. 1994;26:138.

17 Veloz MA, González I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S. Electrochimica Acta. 2002;48(2):135-144. http://dx.doi.org/10.1016/S0013-4686(02)00549-2.

18 Dugstad A. Fundamental aspects of CO2 metal loss corrosion. In: Corrosion; 2006 March 12-16; San Diego, California. Houston: NACE International; 2006 [acesso em 14 nov. 2017]. p. NACE-06111. Disponível em: https:// www.onepetro.org/conference-paper/NACE-06111

19 Kahyarian A, Singer M, Nesic S. Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review. Journal of Natural Gas Science and Engineering. 2016;29:530-549. http://dx.doi.org/10.1016/j. jngse.2015.12.052.

20 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: effect of CO2 on iron dissolution reaction. Corrosion Science. 2017;129:146-151. http://dx.doi.org/10.1016/j.corsci.2017.10.005.

21 Tanupabrungsun T, Brown B, Nesic S. Effect of pH on CO2 corrosion of mild steel at elevated temperatures. Corrosion; 2013 March 17-21; Orlando, Florida. Houston: NACE International; 2013 [acesso em 14 nov. 2017]. p. NACE-2013-2348. Disponível em: https://www.onepetro.org/conference-paper/NACE-2013-2348

22 Popoola LT, Grema AS, Latinwo GK, Gutti B, Balogun AS. Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry. 2013;4:35. https://doi.org/10.1186/2228-5547-4-35.

23 Kermani MB, Morshed A. Carbon dioxide corrosion in oil and gas production — a compendium. Corrosion. 2003;59(8):659-683. http://dx.doi.org/10.5006/1.3277596.

24 Yin ZF, Feng YR, Zhao WZ, Bai ZQ, Lin GF. Effect of temperature on CO2 corrosion of carbon steel. Surface and Interface Analysis. 2009;41(6):517-523. http://dx.doi.org/10.1002/sia.3057.

5b869ea20e88259e47e4c8a0 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections