PRECIPITAÇÃO DO SULFATO DUPLO DE TERRAS RARAS E SÓDIO A PARTIR DE UM LICOR SULFÚRICO DE TERRAS RARAS CONTENDO IMPUREZAS
PRECIPITATION OF RARE EARTH-SODIUM DOUBLE SULFATE FROM A RARE EARTH SULFURIC LIQUOR CONTANING IMPURITIES
Ruberlan Gomes da Silva, Carlos Antonio de Morais, Leandro Viana Teixeira, Éder Domingos de Oliveira
Resumo
O licor sulfúrico de terras raras usado nesse estudo continha 4,54 g.L -1 de óxidos de terras raras (OTR), baixa acidez (<1,0 g H 2 SO 4 .L -1 ) e apresentava em sua composição as impurezas Ca 2+ , Mg 2+ , Mn 2+ , Fe 3+ , Al 3+ , Th 4+ , UO 22+ e PO 43-. Parte desse licor foi purificado com calcário até pH=3,5 e depois com cal hidratada até pH=5,0, sendo obtido um licor de terras raras purificado isento das impurezas Fe 3+ , Th 4+ e PO 43- e com menores concentrações de Al 3+ , UO 22+ e SO 42- . Os ensaios de precipitação das terras raras com sulfato de sódio (Na 2 SO 4 ) mostraram que a qualidade química do sulfato duplo de terras raras e sódio (NaETR(SO 4 ) 2 .xH 2 O) obtido com o licor purificado apresentou teor de OTR de 38%, enquanto que o teor de OTR no sulfato duplo obtido com licor não purificado foi de apenas 31%. A principal impureza foi o cálcio (~3%). A eficiência de precipitação das terras raras foi de 80% e o consumo de Na 2 SO 4 foi de 1,3 toneladas para cada tonelada de OTR contido no licor alimentado. As precipitações foram realizadas a 70°C. A precipitação foi seletiva para as terras raras dos grupos específicos, tendo precipitado 82% do La, Ce, Nd e Pr, 53% do Sm, Eu e Gd e apenas 16% do Tb, Dy, Ho, Er, Tm, Yb, Lu, Y e Sc. Baseado nos resultados foi proposto uma rota de processo onde 80% das terras raras seriam precipitadas na forma de NaETR(SO 4 ) 2 .xH 2 O e os 20% restantes como óxidos (>97% de OTR) ou carbonatos (>68% de OTR) mistos de terras raras.
Palavras-chave
Abstract
The non purified rare earth sulfate liquor used in these study contained 4.54 g.L -1 of rare earth oxides (REO), low acidity (<1.0 g H 2 SO 4 .L -1 ) and presented in its composition the following impurities Ca 2+ , Mg 2+ , Mn 2+ , Fe 3+ , Al 3+ , Th 4+ , UO 22+ e PO 43-. Part of this liquor was purified with limestone until pH=3.5 and after with lime until pH=5.0, and it was obtained a purified rare earth sulfate liquor free of Fe 3+ , Th 4+ and PO 4-3 and with a low concentration of Al 3+ , UO 22+ and SO 42- . The rare earth precipitation experiments using sodium sulphate (Na 2 SO 4 ) indicated that the best chemical quality was obtained in rare earth-sodium double sulfates (NaETR(SO 4 ) 2 .xH 2 O) produced from the purified liquor, presenting a REO content of 38% w/w, while the rare earth-sodium double sulfates from the non purified liquor contained a REO content of only 31% w/w. The main impurity was calcium (~3% w/w Ca). The REO recovery was 80% and the consumption of Na 2 SO 4 was 1.3 ton per ton of REO in the feed liquor. The rare earth precipitation was carried out at 70°C. There was selective precipitation in specific groups of rare earth, being precipitated 82% of La, Ce, Nd and Pr, 53% of Sm, Eu and Gd and only 16% of Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc. Based on this results, it was proposed a process route where 80% of REO would be precipitated as NaREE(SO 4 ) 2 .xH 2 O and the 20% remaining as rare earth oxides (>97% of REO) or as rare earth carbonates (>68% of REO).
Keywords
References
1 Gupta CK, Krishnamurthy N. Extractive metallurgy of rare earths. International Materials Reviews. 1992;37(5):197-210.
2 Tunsu C, Petranikova M, Ekberg C, Retegan T. A hydrometallurgical process for the recovery of rare Earth elements from fluorescente lamp waste fractions. Separation and Purification Technology. 2016;161:172-186.
3 Abreu RD, Morais CA. Purificação de elementos terras raras mediante precipitação destes como sulfato duplo e separação do cério. In: XXIII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa; 2009 Setembro; Gramado, Brasil. Porto Alegre: Pallotti Gráfica e Editora; 2009. p. 657-664.
4 Abreu RD, Morais CA. Study on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagents. Minerals Engineering. 2014;61:82.
5 Teixeira LAV, Silva RG. System and process for selective rare earth extraction with sulphur recovery. Patent US 2015/0329940 A1. 2015.
6 Morais CA, Benedetto JS. Tratamento hidrometalúrgico do minério de Terras Raras de Catalão – Goiás. In: XV Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa – ENTMME; 2001 Setembro; Rio de Janeiro, Brasil. Rio de Janeiro: ENTMME; 2001 p. 807-812.
7 Testa FG, Avelar AN, Silva RG, Souza CC. Mineralogical characterization and alternative to concentrate the rare earth lithotypes from alcaline complex of Catalão – GO. Tecnologica em Metalurgia, Materiais e Mineração. 2016;14(1):46-53.
8 Ru’an C, Jungming X, Peijiong H, Yongjun Z. Recovering REE from leaching liquor of rare earth ore by extraction. Mineral Processing and Extractive Metallurgy Review. 1995;5(4):319-338.
9 Panda R, Jha MK, Hait J, Kumar G, Singh RJ, Yoo K. Extraction of lanthanum and neodymium from leach liquor containing rare Earth metals (REMs). Hydrometallurgy. 2016;165:106-110.
10 Berni TV, Pereira AC, Mendes FD, Rude AL. System and method for rare earth extraction. Patent US 2013/0336856 A1. 2013.
11 Önal MAR, Borra CR, Guo M, Blanpain B, Van Gerven T. Recyclcing of NdF e B magnets using sulfation, selective roasting and water leaching. Journal Sustain Metall. 2015;1(3):199-215.
12 Sadri F, Rashchi F, Amini A. Hydrometalurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd. International Journal of Mineral Processing. 2017;159:7-15.
13 Lucas J, Lucas P, Mercier TL, Rollat A, Davenport W. Rare earth science, technology, production and use. Netherdlands: Elsevier; 2015.
14 Dutrizac JE. Jarosite-type compounds and their application in the metallurgical industry. New York: Mineral Sciences Laboratories – CANMET, Society of the AIME; 1983.