Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20181541
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ESTUDO COMPARATIVO DA TRANSFORMAÇÃO AUSTENITA-FERRITA EM DOIS AÇOS IF COM DIFERENTES COMPOSIÇÕES QUÍMICAS

COMPARATIVE STUDY ABOUT AUSTENITE-FERRITA TRANSFORMATION IN TWO IF STEELS WITH DIFFERENT CHEMICAL COMPOSITIONS

Ana Luiza Soares Cezário, Geraldo Lúcio de Faria

Downloads: 0
Views: 1171

Resumo

Os aços IF são livres de elementos intersticiais na matriz ferrítica. Esses elementos são controlados no processo de refino na aciaria a partir da aplicação de técnicas de desgaseificação a vácuo e adição de elementos estabilizantes. Durante a fabricação e em algumas aplicações específicas dos aços IF, como por exemplo em soldagem onde a transformação de fase γ → α e o efeito dos elementos de liga na sua cinética têm forte influência na microestrutura final. Neste contexto, este trabalho caracterizou microestruturalmente e comparou as cinéticas de transformação de fases de dois tipos de aços IF com composições químicas diferentes, sendo um deles estabilizado ao Ti (IF-Ti) e outro estabilizado ao Ti e ao Nb (IF-TiNb) com adição de Mn. Concluiu-se que o aço IF-TiNb no estado de entrega possui uma microestrutura mais refinada devido à presença do Nb e seu papel de refinador de grão na laminação controlada do aço. Verificou-se que as temperaturas críticas Ar3 e Ar1 do aço IF-TiNb são menores do que as temperaturas medidas para o aço IF-Ti. Atribui-se este efeito à diferença no teor de Mn entre os aços estudados, que parece potencializar o refino de grão na etapa final de resfriamento da chapa de aço laminada.

Palavras-chave

Aços IF; Cinética de transformação de fase; Composição química.

Abstract

The IF steels are free of interstitial elements in the ferritic matrix. These elements are controlled in the refining process in the steel plant through the application of vacuum degassing techniques and the addition of stabilizing elements. During the manufacture and in some specific applications of the IF steels, as for example in welding where the phase transformation γ → α and the effect of the alloying elements on their kinetics have strong influence on the final microstructure. In this context, this work characterized microstructurally and compared the phase transformation kinetics of two types of IF steels with different chemical compositions, one being stabilized to Ti (IF-Ti) and the other stabilized to Ti and Nb (IF-TiNb) with addition of Mn. It was concluded that the IF-TiNb steel in the delivery state has a more refined microstructure due to the presence of Nb and its role as a grain refiner in the controlled rolling of the steel. It was found that the critical temperatures Ar3 and Ar1 of the IF-TiNb steel are lower than the measured temperatures for the IF-Ti steel. This effect is attributed to the difference in Mn content between the studied steels, which seems to potentiate the grain refining in the final stage of cooling of the rolled steel sheet.

Keywords

IF steels; Kinetics of phase transformation; Chemical composition.

Referências

1 Bhadeshia HKDH. Phase transformations during spot welding of interstitial-free steel. In: Proceedings of the International Conference on Interstitial-free Steels; 2010; Jamshedpur, India. Cambridge: University of Cambridge; 2010. 11 p.

2 Beladi H, Rohrer GS. The distribution of grain boundary planes in interstitial free steel. The Minerals, Metals & Materials. 2013;44A:115-124.

3 Ghosh S, Singh AK, Mula S. Effect of critical temperatures on microstructures and mechanical properties of Nb-Ti stabilized IF steel processed by multiaxial forging. Materials & Design. 2016;100:47-57. http://dx.doi.org/10.1016/j.matdes.2016.03.107.

4 Deardo AJ. Physical metallurgy of interstitial-free steels: precipitates and solutes. In: Proceedings of the IF Steel; 2000; Warrendale. Warrendal: International Steel Society; 2000. p. 125-136.

5 Fonseca FAV. Efeito do substrato dos aços IF nas propriedades do revestimento Galvannealed [dissertação]. Belo Horizonte: Universidade Federal de Minas Gerais; 2006.

6 Saray O, Purcek G, Karaman I, Neindorf T, Maier HJ. Equal-channel angular sheet extrusion of interstitialfree (IF) steel: microstructural evolution and mechanical properties. Materials Science and Engineering A. 2011;528(21):6573-6583. http://dx.doi.org/10.1016/j.msea.2011.05.014.

7 Tither G, Garcia CI, Hua M, Deardo AJ. Precipitation behavior and solute effects in interstitial-free steels sheets. In: Proceedings of the International Forum for Physical Metallurgy of IF Steels; 1994; Tokyo. Tokyo: ISIJ; 1994. p. 293-322.

8 Lips K, Yang X, Mols K. The Effect of coiling temperature and continuous annealing on the properties of bake hardenable IF Steels. Steel Research. 1996;67(9):357-363. http://dx.doi.org/10.1002/srin.199605501.

9 Mohrbacher H. Niobium based metallurgical concepts and strategies for the production of IF-HS and IF-BH steel grades. In: Proceedings of the International Conference on Interstitial Free Steels: Manufacturing Applications; 2010; Jamshedpur, India. Local: NiobelCon, Belgium; 2010. 12 p.

10 Dias FMS, Fonseca FAV, Hauegen CG, Lins JFC, Campos MF. Textura e comportamento mecânico de aços IF estabilizados ao Ti e Nb-Ti. Tecnologica em Metalurgia, Materiais e Mineração. 2012;9(4):294-301.

11 Bayraktar E, Chevalier JP, Kaplan D, Devillers L. Effect of alloying elements on the damage of interstitial free steels. in: Proceedings of the SEM Annual Conference; 2009; Albuquerque, New Mexico, USA. Albuquerque: Society for Experimental Mechanics; 2009.

12 Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain siza stability and hardenability in ultrafinagrained ferrite/martensite dual-phase steels. Metallurgical and Materials Transactions. 2012;43A(1):37-46. http:// dx.doi.org/10.1007/s11661-011-0828-3.

13 American Society for Testing and Materials – ASTM. ASTM E1382-97: standard test methods for determining average grain size using semiautomatic and automatic image analysis. West Conshohocken: ASTM International; 2004.

14 Pawlowski B. Determination of critical points of hypoeutectoid steel. Archives of Metallurgy and Materials. 2012;57(4):957-962. http://dx.doi.org/10.2478/v10172-012-0106-4.

15 Zhang G, Chae J, Kim K, Suh DW. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass% alloy. Materials Characterization. 2013;81:56-67. http://dx.doi.org/10.1016/j.matchar.2013.04.007.

16 Kim J, Jung JG, Kim DH, Lee YK. The kinetics of Nb(C, N) precipitation during the isothermal austenite to ferrite transformation in a low-carbon Nb-microalloyed steel. Acta Materialia. 2013;61(19):7437-7443. http://dx.doi. org/10.1016/j.actamat.2013.08.052.

17 Johnson WA, Mehl RF. Reactions kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416-442.

18 Avrami M. Kinetics of phase change I. General theory. The Journal of Chemical Physics. 1939;7(12):1103-1112. http://dx.doi.org/10.1063/1.1750380.

19 Kolmogorov A. A statistical theory for the recrystallization of metals. Akademii Nauk SSSR Seriya Matematicheskaya. 1937;1:355-359.

20 Suh DW, Oh CS, Han HN, Kim SJ. Dilatometric analysis of austenite decomposition considering the effect of non-isotropic volume change. Acta Materialia. 2007;55(8):2659-2669. http://dx.doi.org/10.1016/j.actamat.2006.12.007.

21 Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica. 1959;7(1):59-60. http://dx.doi.org/10.1016/0001-6160(59)90170-1.

22 Singh SB, Krishnan K, Sahay SS. Modeling non-isothermal austenite to ferrite transformation in low carbon steels. Materials Science and Engineering A. 2007;445-446:310-315. http://dx.doi.org/10.1016/j.msea.2006.09.044.

5c1297310e8825696afd3a72 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections