Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191355
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EFEITO DA ESPESSURA DO ADESIVO NO COMPORTAMENTO MECÂNICO DE JUNTAS ADESIVAS PARA APLICAÇÃO AUTOMOTIVA

EFFECT OF ADHESIVE THICKNESS IN THE MECHANICAL BEHAVIOR OF ADHESIVE JOINTS FOR AUTOMOTIVE APPLICATIONS

Diego Tolotti de Almeida João Henrique Corrêa de Souza Piero David Maehler Tiago Roberto Simon

Downloads: 2
Views: 1323

Resumo

É crescente a aplicação de adesivos estruturais como método de fixação nos diversos segmentos da indústria, principalmente na indústria automotiva. Isso se justifica pela necessidade de redução do consumo de energia e economia de recursos, trazendo assim, uma série de benefícios ao produto/processo, quando comparado aos tradicionais sistemas de fixação com parafuso, rebite ou solda. Esta pesquisa estudou alguns fatores que influenciam nas forças mecânicas das juntas adesivas submetidas ao ensaio de tração cisalhante (Lap Shear) e tração cruzada (Cross Peel). Três diferentes espessuras do adesivo foram utilizadas para fabricar as juntas adesivas (0,80, 1,50 e 3,00mm). Além disso, foi possível identificar o efeito de diferentes materiais de base sobre o comportamento mecânico das juntas adesivas. Resultados experimentais mostraram que menores espessuras de adesivo aumentam consideravelmente a resistência mecânica das juntas submetidas a ensaio de tração cisalhante. Por outro lado, resultados obtidos no ensaio de tração cruzada, não apresentaram este mesmo comportamento. No entanto, existe uma relação entre a performance da junta e o material do substrato a ser colado.

Palavras-chave

Juntas adesivas; Comportamento mecânico; Resistência ao cisalhamento; Tração cruzada; Espessura do adesivo.

Abstract

The application of structural adhesives is increasing as a method of fixation in the various segments of industry, especially in the automotive industry. This is justified by the need to reduce energy consumption and save resources, thus bringing a series of benefits to the product / process compared to traditional fastening systems with bolt, rivet or weld. This study studied some factors that influence the mechanical strength of the adhesive shear tests submitted to the Lap Shear and Cross Peel tests. Three different adhesive thicknesses were used to make the adhesive joints (0.80, 1.50 and 3.00mm). In addition, it was possible to identify the effect of different base materials on the mechanical behavior of the adhesive joints. Experimental results have shown that minor adhesive thicknesses considerably increase the mechanical strength of the joints subjected to shear traction tests. On the other hand, the results of the cross-traction test did not obtain this same behavior. However, there is a relationship between the performance of the joint and the material of the substrate to be bonded.

Keywords

Adhesive seals; Mechanical behavior; Shear strength; Cross traction; Adhesive thickness.

Referências

1 Silva LFM, Neves PJC, Adams RD, Spelt JK. Analytical models of adhesively bonded joints e part I: literature survey. International Journal of Adhesion and Adhesives. 2009;29:319-330.

2 Barnes TA, Pashby IR. Joining techniques for aluminum space frames used in automobiles Part II Ð adhesive bonding and mechanical fasteners. Journal of Materials Processing Technology. 2000;99:72-79.

3 Adams RD, Comyn J, Wake WC. Structural adhesive joints in engineering. 2nd ed. London: Chapman & Hall; 1997.

4 Adams RD, Peppiatt NA. Stress analysis of adhesive bonded lap joints. J Strain Anal. 1974;9(3):185-196.

5 Arenas Reina JM, Narbón PJJ, Alía C. Influence of the surface finish on the shear strength of structural adhesive joints and application criteria in manufacturing processes. The Journal of Adhesion. 2009;85(6):324-340.

6 Xin Y, Li Y, Yong X, Qing Z. Effect of base steels on mechanical behavior of adhesive joints with dissimilar steel substrates. International Journal of Adhesion and Adhesives. 2014;51:42-53.

7 De’Nève B, Delamar M, Nguyen TT, Shanahan MER. Failure mode and ageing of steel/epoxy joints. Applied Surface Science. 1998;134:202-212.

8 Challita G, Othman R, Casari P, Khalil K. Experimental investigation of the shear dynamic behavior of double-lap adhesively bonded joints on a wide range of strain rates. International Journal of Adhesion and Adhesives. 2011;31:146-153.

9 Seo DW, Lim JK. Tensile bending and shear strength distributions of adhesive bonded butt joint specimens. Composites Science and Technology. 2005;65:1421-1427.

10 Peroni L, Avalle M, Belingardi G. Comparison of the energy absorption capability of crash boxes assembled by spotweld and continuous joining techniques. International Journal of Impact Engineering. 2009;36:498-511.

11 Seong MS, Kim TH, Nguyen KH, Kweon JH, Choi JH. A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum. Composite Structures. 2008;86:135-145.

12 Silva LFM, Magalhães AG, Moura MFSF. Juntas adesivas estruturais. Porto: Publindústria; 2007.

13 Schijve J, Van Lipzig HTM, Van Gestel GFJA, Hoeymakers AHW. Fatigue properties of adhesive-bonded laminated sheet material of aluminum alloys. Engineering Fracture Mechanics. 1979;12:561-579.

14 Her SC. Stress analysis of adhesively-bonded lap joint. Composite Structures. 1999;47:673-678.

15 Li G, Lee-Sullivan P, Thring RW. Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints. Composite Structures. 1999;46:395-403.

16 Pandey PC, Shankaragouda H, Singh AK. Nonlinear analysis of adhesively bonded lap joints considering viscoplasticity in adhesives. Composite Structures. 1999;70:387-413.

17 Vaidya UK. Experimental-numerical studies of transverse impact response of adhesively bonded lap joints in composite structures. International Journal of Adhesion and Adhesives. 2006;26:184-198.

18 American Society for Testing and Materials – ASTM. ASTM D1002. Standard Teste Method for Apparent Shear Strenght of Single-Lap Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal). West Conshohocken: ASTM; 1994.

19 SAE International. SAE J1553. Cross Peel Test For Automotive – Type Adhesives for Fiber Reinforced Plastic [FRP] Bonding. SAE The Engineering Resource for Advancing Mobility, 400 Commonwealth Drive. Warrendale: SAE International; 1986.

20 Associação Brasileira de Normas Técnicas – ABNT. ABNT NBR 6834. Alumínio e suas ligas - Classificação da Composição Química. Rio de Janeiro: ABNT; 2006.

21 Associação Brasileira de Normas Técnicas – ABNT. ABNT NBR 7823. Alumínio e suas ligas - Chapas - Propriedades Mecânicas. Rio de Janeiro: ABNT; 2007.

22 General Motors Worldwide. GMW3032. High strength sheet steel, 180 MPa through 700 Mpa yield strenghts. USA: General Motors Worldwide. Worldwide Engineering Standards; 2013.

23 Associação Brasileira de Normas Técnicas – ABNT. ABNT NBR 5915. Bobinas e chapas finas a frio de aço carbono para estampagem - Especificação. Rio de Janeiro: ABNT; 2008.

24 LORD Corporation. Dados técnicos. Adesivos acrílicos LORD 403, 406 e 410 com acelerador 19 ou 19GB da LORD. Cary: LORD Corporation; 2012. NC 27511-7923.

25 Mahdi S, Kinloch AJ, Matthews CMA. The static mechanical performance of repaired composite sandwich beams: part I; experimental characterization. The Journal of Sandwich Structures & Materials. 2003;5:179-202.

26 Naito K, Onta M, Kogo Y. The effect of adhesive thickness on tensile and shear strength of polyimide adhesive. International Journal of Adhesion and Adhesives. 2012;36:77-85.

27 Adams RD, Peppiatt N. J Strain Anal. 1974;9:185.

28 Gleich DM, Van Tooren MJL, Beukers A. Journal of Adhesion Science and Technology. 2001;15:1091.

29 Fruet TF. Análise para substituição da solda ponto de uma carroceria de chapas dinas de aço carbono e aço galvanizado por adesivo estrutural [trabalho de conclusão]. Caxias do Sul: Universidade de Caxias do Sul; 2011.

30 Bikerman, J.J. Particle adhesion theory and experiment. Advances in Colloid and Interface Science. 1967;1:111-239.

31 Abdelaziz AT, Rachid B, Said A, Sebastien G, Hychem B. Bonded joints with composite adherends. Part I – Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture. International Journal of Adhesion and Adhesives. 2006;26(4):226-236.

32 Crocombe AD. Global yielding as a failure criteria for bonded joints. International Journal of Adhesion & Adhesives. 1989:145-153.

33 Volkersen O. Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten. Luftfahrtforschung. 1938;15:41-47.

34 Goland M, Reissner E. The stresses in cemented joints. Journal of Applied Mechanics. 1944:A17-A27.

35 Silva LFM, Campilho RDSG. Design of adhesively-bonded composite joints. In: Vassilopoulos AP. Fatigue and fracture of adhesively-bonded composite joints: behaviour, simulation and modelling. Kidlington: Woodhead Publishing; 2015.

36 Couvrat P. Le collage structural moderne: théorie et pratique. Paris: Tec & DocLavoisier; 1992.

37 Silva LFM, Campilho Raul DSG. Advances in numerical modeling of adhesive joints. Berlin: Springer Berlin Heidelberg; 2012.

5d1a63af0e88256870b687d5 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections