Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191459
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ESTUDO DO EFEITO DA ADIÇÃO DE DIFERENTES TEORES DE ARGILAS MONTMORILONITA E MICA MUSCOVITA NO COMPORTAMENTO PROTETIVO DE TINTAS EM PÓ BASE EPÓXI NA APLICADAS SOBRE AÇO AISI 1008

STUDY OF THE EFFECT OF THE ADDITION OF DIFFERENT LEVELS OF MONTMORILLONITE AND MICA MUSCOVITE CLAYS ON THE PROTECTIVE BEHAVIOR OF EPOXY BASE POWDER PAINTS APPLIED ON AISI 1008 STEEL

Patrícia da Costa Ferreira, Lilian Vanessa Rossa Beltrami, Diego Piazza, Sandra Raquel Kunst, Ademir Jozé Zattera

Downloads: 0
Views: 1264

Resumo

O presente trabalho apresenta a elaboração de nanocompósitos poliméricos de tinta em pó, à base de resina epoxídica e diferentes teores de argilas montmorilonita e mica muscovita. Os nanocompósitos foram obtidos no estado fundido em extrusora duplarrosca co-rotante e foram analisados por ensaios de aderência, perfilometria, ângulo de contato, espectroscopia de impedância eletroquímica e névoa salina. Os resultados indicam que a rugosidade superficial aumentou com o aumento das concentrações de argilas. Em geral a grande maioria das amostras com argilas apresentaram melhora nas propriedades protetivas, quando comparadas com as amostras sem adição de argila.

Palavras-chave

Corrosão; Montmorilonita: Mica muscovita.

Abstract

The present work presents the elaboration of polymer nanocomposites of powder paint, based on epoxy resin and different levels of montmorillonite and muscovite mica clays. The nanocomposites were obtained in the molten state in a co-rotating double-screw extruder. The nanocomposites properties were analyzed by adhesion, profilometry, contact angle, electrochemical impedance spectroscopy and salt fog tests. The results indicate that the surface roughness increased with increasing concentrations of clays. In general, the majority of samples with clays showed improvement in the protective properties when compared to the samples without addition of clay.

Keywords

Corrosion; Montmorillonite; Muscovite mica.

Referências

1 Piazza D, Lorandi NP, Pasqual CI, Scienza LC, Zatteraa AJ. Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating. Materials Science and Engineering A. 2011;528:6769-6775.

2 Piazza D, Silveira DS, Lorandi NP, Birriel EJ, Scienza LC, Zattera AJ. Polyester-based powder coatings with montmorillonite nanoparticles applied on carbon steel. Progress in Organic Coatings. 2012;73:42-46.

3 Thostenson ET, Li C, Chou T-W. Nanocomposites in context. Composites Science and Technology. 2005;65:491-516.

4 Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites - a review. Materials Science and Engineering A. 2005;393:1-11.

5 Djebara Y, El Moumen A, Kanit T, Madani S, Imad A. Modeling of the effect of particles size, particles distribution and particles number on mechanical properties of polymer-clay nanocomposites: Numerical homogenization versus experimental results. Composites. Part B, Engineering. 2016;86:135-142.

6 Yeh J-M, Chang K-C. Polymer/layered silicate nanocomposite anticorrosive coatings. Journal of Industrial and Engineering Chemistry. 2008;14:275-291.

7 Nunes MABS, Galvão LS, Ferreira TPM, Luiz EJFT, Bastos YLM, Santos ASF. Reprocessability of high impact polystyrene/clay nanocomposites in extrusion. Polymer Degradation & Stability. 2016;125:87-96.

8 Chen C, Khobaid M, Curliss D. Epoxy layered-silicate nanocomposites. Progress in Organic Coatings. 2003;47:376-383.

9 Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer. 2008;49:3187-3204.

10 Hang TTX, Truc TA, Nam TH, Oanh VK, Jorcin JB, Pébère N. Corrosion protection of carbon steel by an epoxy resin containing organically modified clay. Surface and Coatings Technology. 2007;201:7408-7415.

11 Carrasco F, Pagès P. Thermal degradation and stability of epoxy nanocomposites: Influence of montmorillonite content and cure temperature. Polymer Degradation & Stability. 2008;93:1000-1007.

12 Chang K-C, Chen S-T, Lin H-F, Lin C-Y, Huang H-H, Yeh J-M, et al. Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements. European Polymer Journal. 2008;44:13-23.

13 Burgentzlé D, Duchet J, Gérard JF, Jupin A, Fillon B. Solvent-based nanocomposite coatings. Journal of Colloid and Interface Science. 2004;278:26-39.

14 Cao X, Lee LJ, Widya T, Macosko C. Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer. 2005;46:775-783.

15 Stretz HA, Paul DR, Li R, Keskkula H, Cassidy PE. Intercalation and exfoliation relationships in melt-processed poly (styrene-co-acrylonitrile)/montmorillonite nanocomposites. Polymer. 2005;46(8):2621-2637.

16 Pandey JK, Reddy KR, Kumar AP, Singh RP. An overview on the degradability of polymer nanocomposites. Polymer Degradation & Stability. 2005;88:234-250.

17 Saarivirta EH, Vaganov GV, Yudin VE, Vuorinen J. Characterization and corrosion protection properties of epoxy powder coatings containing nanoclays. Progress in Organic Coatings. 2013;76:757-767.

18 Wang K, Wang L, Wu J, Chen L, He C. Preparation of highly expholiated epoxy/clay nanocomposites by “slurry compounding”: process and mechanisms. Langmuir. 2005;21:3613-3618.

19 Shi X, Nguyen TA, Suo Z, Liu Y, Avci R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surface and Coatings Technology. 2009;204:237-245.

20 Joanny JF, Gennes PGJ. A model for contact angle hysteresis. Chemical Physics. 1984;81:552.

21 Suegama PH, Fugivara CS, Benedetti AV, Delgado J, Guilemany JM. Electrochemical characterisation study of coatings obtained by High Velocity Oxy-Fuel Sprayin (HVOF). Portugaliae Electrochimica Acta. 2003;21:141-154.

22 Bagherzadeh MR, Mousavinejad T. Preparation and investigation of anticorrosion properties of water-based epoxyclay nanocoating modified by Na+-MMT and Cloisite 30B. Progress in Organic Coatings. 2012;74:589-595.

23 Warner TJ, Schmidt MP, Sommer F, Bellot D. Characterization of corrosion initiation on 2024 aluminium alloy by atomic force microscopy. Zeitschrift fur Metallkunde. 1995;86(7):494-501.

24 Darmiani E, Danaee I, Rashed GR, Zaarei D. Formulation and study of corrosion prevention behavior of epoxy cerium nitrate – montmorillonite nanocomposite coated carbon steel. Journal of Coatings Technology and Research, American Coatings Association & Oiland Colour Chemists Association. 2013;10(4):493-502.

5c87a67c0e88253824db04aa tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections