INFLUENCE OF PERIODIC PAUSES ON FATIGUE LIFE OF AN AUTOMOBILE HORN BRACKET UNDER VARIABLE AMPLITUDE LOADING
INFLUÊNCIA DE PAUSAS PERIÓDICAS SOBRE A VIDA EM FADIGA DE UM SUPORTE DE BUZINA AUTOMOTIVO SOB CARREGAMENTO DE AMPLITUDE VARIÁVEL
Clayton Mamedes Angelo, Wilson de Simone Carlos, Cláudio Geraldo Schön
Abstract
A metallic horn bracket used in a typical passenger’s car has been tested mounted in the vehicle by using two different approaches: in a proving ground (in the field) and using a road simulator (in a laboratory). The results lead to different durabilities (respectively, failure at 18% and 11% of the complete test). This difference is attributed to the presence of pauses in the field test, which are not present in the road simulator test spectrum. This hypothesis was tested by introducing artificial periodic pauses in bench tests. It is shown that the average fatigue life of the component, which is 170922 cycles in the continuous test, is increased to 239434 cycles by introducing 5 hour pauses each 100000 cycles, to 240848 cycles by using 10 hour pauses, and to 1043743 cycles by using 45 hour pauses. The results are discussed with regard to fatigue testing and durability design.
Keywords
Resumo
Um suporte de buzina metálico empregado em um carro de passageiros típico foi testado como montado na estrutura do veículo usando dois procedimentos: em uma pista de testes (no campo) e em um simulador de estradas (no laboratório). Os resultados mostram diferentes durabilidades (respectivamente falha em 18% e 11% do teste completo). Essa diferença foi atribuída à existência de pausas no teste de campo, que não são presentes no espectro do ensaio usando o simulador de estradas. A hipótese foi testada introduzindo-se pausas artificiais periódicas em testes de bancada. Observa-se que a vida média em fadiga do componente, que é de 170922 ciclos no teste contínuo, aumenta para 239343 ciclos com pausas de 5 horas a cada 100000 ciclos, para 240848 pelo uso de pausas de 10 horas e para 1043743 ciclos usando-se pausas de 45 horas. Os resultados são discutidos em função da relação entre ensaios de fadiga e a confiabilidade estrutural de componentes
Palavras-chave
Referências
1 Schütz W. A history of fatigue. Engineering Fracture Mechanics. 1996;54:263-300.
2 Berger C, Eulitz KG, Heuler P, Kotte KL, Naundorf H, Sonsino CM, et al. Betriebsfestigkeit in Germany – an overview. International Journal of Fatigue. 2002;24:603-625.
3 Schijve J. Fatigue of structures and materials in the 20th century and the state of the art. International Journal of Fatigue. 2003;25:679-702.
4 Socie DF. Fatigue-life prediction using local stress-strain concepts. Experimental Mechanics. 1977;17:50-56.
5 Skorupa M. Load interaction effects in fatigue crack growth under variable amplitude loading: a literature review – part I: empirical trends. Fatigue & Fracture of Engineering Materials & Structures. 1998;21:897-1006.
6 Skorupa M. Load interaction effects in fatigue crack growth under variable amplitude loading: a literature review – part II: qualitative interpretation. Fatigue & Fracture of Engineering Materials & Structures. 1999;22:905-926.
7 Schijve J. Fatigue of structure and materials. Boston: Kluwer Academic; 2001.
8 Stephens R, Fatemi A. Metal fatigue in engineering, 2nd ed. New York: John Wiley and Sons; 2000.
9 Suresh S. Fatigue of materials, 2nd ed. New York: Cambridge University Press; 2004.
10 Schön CG. Mecânica dos materiais. Rio de Janeiro: Elsevier; 2013.
11 Probst EP, Hillberry BM. Fatigue crack delay and arrest due to single peak tensile overloads. AIAA Journal. 1974;12:330-335.
12 Fleck NA. Fatigue crack growth due to periodic underloads and overloads. Acta Metallurgica. 1985;33:1339-1354.
13 Pompetzki MA, Topper TH, DuQuesnay DL. The effect of compressive underloads and of tensile overloads on fatigue damage accumulation in {SAE 1045} steel. International Journal of Fatigue. 1990;12:207-213.
14 Geary W. A review on some aspects of fatigue crack growth under variable amplitude loading. International Journal of Fatigue. 1992;14:377-386.
15 Sadananda K, Vasudevan AK, Holtz RL, Lee EU. Analysis of overload effects and related phenomena. International Journal of Fatigue. 1999;21:S233-S246.
16 Colombo C, Du Y, James MN, Paterson EA, Vergani L. On crack tip shielding due to plasticity-induced closure after an overload. Fatigue & Fracture of Engineering Materials & Structures. 2010;33:766-777.
17 Elber W. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics. 1970;2:37-45.
18 Borrego LP, Antunes FV, Costa JD, Ferreira JM. Numerical simulation of plasticity induced crack closure under overloads and high-low blocks. Engineering Fracture Mechanics. 2012;95:57-71.
19 Sadananda K, Sarkar S, Kujawski D, Vasudevan AK. A two-parameter analysis of S-N fatigue life using Ds and smax. International Journal of Fatigue. 2009;31:1648-1659.
20 Huang HL, Ho NJ. The observation and analysis of the dislocation morphology of fatigue crack tips at steady state propagation rates subject to a single peak load. Materials Science and Engineering A. 2001;298:251-261.
21 Meyer AA, Adams DD. Damage identification of ground vehicle through passive probing of suspension damping. Experimental Mechanics. 2012;53:557-569.
22 Angelo CM, Machado FAC, Schön CG. Influence of tires sizes over automobile body spectrum loads and fatigue damage accumulation. Materials & Design. 2015;67:385-389.
23 Straub T, Berwind MF, Kennerknecht T, Lapusta Y, Eberl C. Small-scale multiaxial setup for damage detection into the very high cycle fatigue regime. Experimental Mechanics. 2015;55:1285-1299.
24 Associação Brasileira de Normas Técnicas. NBR 5483: Acústica - medição de ruído emitido por buzinas instaladas em veículos automotores – método de engenharia. Rio de Janeiro: ABNT; 2006.
25 HBM do Brasil. Produtos. 2013. Available at http://www.hbm.com/pt/menu/produtos/componentes-de-pesagem/celulas-de-carga/z6/
26 European Committee for Standardization. EN 10002-1 – metallic materials – tensile testing – part 1: Method of test at ambient temperature. Brussels: CEN; 2001.
27 American Society for Testing Materials. ASTM E1049-89 – standard practices for cycle counting in fatigue analysis. West Conshohocken: ASTM; 2011. http://dx.doi.org/10.1520/E1049-85R11E01.
28 Percival D, Walden A. Spectral analysis in physical application. Cambridge: Cambridge University Press; 1993.
29 Kim JH, Chau Dinh T, Zi G, Kong JS. The effect of compression stresses, stress level and stress order of fatigue crack growth of multiple site damage. Fatigue & Fracture of Engineering Materials & Structures. 2012;33:903-917.
30 Iyer K, Mall S. Effects of cyclic frequencies and contact pressure in fretting fatigue under two-level block loading. Fatigue & Fracture of Engineering Materials & Structures. 2000;23:335-346.
31 Stanzl-Tschegg SE. Fracture mechanisms and fracture mechanics at ultrassonic frequencies. Fatigue & Fracture of Engineering Materials & Structures. 1999;22:567-579.
32 Stanzl-Tschegg SE, Mayer H, Stich A. Variable amplitude loading in the very high-cycle fatigue regime. Fatigue & Fracture of Engineering Materials & Structures. 2002;25:887-896.
33 Mayer H. Ultrasonic torsion and tension - compression fatigue testing: measuring principles and investigations in 2024-T351 aluminum alloy. International Journal of Fatigue. 2006;28:1446-1455.
34 Backe D, Balle F, Eifler D. Fatigue testing of CFRP in the very high cycle fatigue (VHCF) regime at ultrasonic frequencies. Composites Science and Technology. 2015;106:93-99.
35 Mayer H. Recent developments in ultrasonic fatigue. Fatigue & Fracture of Engineering Materials & Structures. 2016;39:3-29.