Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191575
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

EFFECT OF pH TO RECOVER Cu(II), Ni(II) AND Co(II) FROM NICKEL LATERITE LEACH USING CHELATING RESINS

EFEITO DO pH NA RECUPERAÇÃO DE Cu(II), Ni(II) E Co(II) DO LIXIVIADO DE NÍQUEL LATERÍTICO UTILIZANDO RESINAS QUELANTES

Amilton Barbosa Botelho Junior, Denise Crocce Romano Espinosa, David Dreisinger, Jorge Alberto Soares Tenório

Downloads: 1
Views: 1233

Abstract

Copper, nickel and cobalt can be found in nickel laterite ores. After leaching process of nickel ore, it is necessary a purification step to recover these metals. Chelating ion exchange resins can be applied to purify the liquor generated. The aim of this work was study two different chelating resins to recover these metals by three different synthetic solutions to simulate real conditions. Batch experiments were performed, and effect of pH was studied. First solution was prepared with all metal, and resin Lewatit TP 207 with iminodiacetate functional group was used to recover selectively copper. The second solution, without copper, was prepared and resin Lewatit TP 220 with bis-picolylamine functional group to recover nickel. Then, the last solution was prepared without copper and nickel using Lewatit TP 220 to recovery cobalt selectively. Results shows that, at pH 2.00, it is possible recover selectively copper using TP 207, nickel had higher selectively than cobalt in Solution 2 experiments and cobalt was highly recovered in Solution 3 experiments. These results are important to design industrial process to recover these metals.

Keywords

Hydrometallurgy; Ion exchange; Nickel laterite.

Resumo

Cobre, níquel e cobalto podem ser encontrados em minérios lateríticos de níquel. Após o processo de lixiviação do minério de níquel, é necessário uma etapa de purificação para recuperar estes metais. Resinas quelantes trocadoras de íons podem ser utilizadas para purificar o licor gerado. O objetivo deste trabalho foi estudar duas resinas quelantes diferentes para recuperar estes metais a partir de três soluções sintéticas para simular as condições reais. Ensaios em batelada foram realizados e o efeito do pH foi estudado. A primeira solução foi preparada com todos os metais, e a resina Lewatit TP 207 com grupo funcional iminodiacetato foi utilizada para recuperar o cobre seletivamente. A segunda solução, sem cobre, foi preparada e a resina Lewatit TP 220 com grupo funcional bis-picolilamina foi estudada para recuperar níquel. Então, a última solução foi preparada sem cobre e níquel utilizando Lewatit TP 220 para recuperar o cobre seletivamente. Resultados mostraram que, em pH 2,00, foi possível recuperar seletivamente cobre utilizando TP 207, níquel teve maior seletividade do que cobalto nos experimentos com a Solução 2 e cobalto teve alta recuperação em experimentos com a Solução 3. Estes resultados são importantes para projetar um processo industrial.

Palavras-chave

Hidrometalurgia; Troca iônica; Níquel laterítico.

Referências

1 Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals. Oxford: Elsevier; 2011.

2 Mudd GM. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews. 2010;38:9-26.

3 Mudd GM, Jowitt SM. A Detailed Assessment of Global Nickel Resource Trends and Endowments. Economic Geology and the Bulletin of the Society of Economic Geologists. 2014;109:1813.

4 Dalvi AD, Bacon WG, Osborne RC. The Past and the Future of Nickel Laterites. PDAC 2004 International Convention 2004, 1.

5 Torries TF. Comparative costs of nickel sulphides and laterites. Resources Policy. 1995;21:179.

6 Gupta CK. Chemical metallurgy: Principles and practice. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 1981.

7 Oxley A, Barcza N. Hydro–pyro integration in the processing of nickel laterites. Minerals Engineering. 2013;54:2-13. 8 Harland CE. Ion Eschange: theory and practice. Cambrigde: The Royal Society of Chemistry; 1994.

9 Inamuddin M, Luqman M. Ion Exchange Technology I. Netherlands: Springer; 2012. (vol. 10).

10 Zagorodni, AA Ion Exchnange Materials: Properties and Application. Stockholm: Elsevier; 2012. (vol. 33).

11 Zainol Z, Nicol MJ. Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings. Hydrometallurgy. 2009;96(4):283-287.

12 Jiménez Correa MM, Aliprandini P, Tenório JAS, Espinosa DCR. Precipitation of metals from liquor obtained in nickel mining. In: Kirchain RE, Blanpain B, Meskers C, Olivetti E, Apelian D, Howarter J, Kvithyld A, Mishra B, Neelameggham NR, Spangenberger J. Rewas 2016: Towards Materials Resource Sustainability; 2016. p. 333-338.

13 Correa MMJ, Aliprandini P, Silvas FPC, Tenório JAS, Dreisinger, D.; Espinosa DCR. Adsorption of Nickel and Cobalt in the Acid Chelating Resin Amberlite IRC 748. In: Canadian Institute of Mining, Metallurgy and Petroleum. Proceedings of the Conference of Metallurgists hosting World Gold & Nickel - Cobalt.; 2017 August 27-30; Vancouver, Canada. Westmount: CIM; 2017.

14 Lanxess Product Information. Lewatit® TP 207. Cologne: Lanxess; 2011. p. 1-5.

15 Rudnicki P, Hubicki Z, Kołodyńska D. Evaluation of heavy metal ions removal from acidic waste water streams. Chemical Engineering Journal. 2014;252:362.

16 Littlejohn P, Vaughan J. Recovery of nickel and cobalt from laterite leach tailings through resin-in-pulp scavenging and selective ammoniacal elution. Minerals Engineering. 2013;54:14.

17. LANXESS Product Information - Lewatit® MonoPlus TP 220 2011, 10-13.

18 Yu Z, Qi T, Qu J, Wang L, Chu J. Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange. Journal of Hazardous Materials. 2009;167:406.

19 Zainol Z, Nicol MJ. Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748. Hydrometallurgy. 2009;99:175.

20 Littlejohn P, Vaughan J. Selectivity of commercial and novel mixed functionality cation exchange resins in mildly acidic sulfate and mixed sulfate–chloride solution. Hydrometallurgy. 2012;121-124:90.

21 Mendes FD, Martins AH. Selectivity of commercial and novel mixed functionality cation exchange resins in mildly acidic sulfate and mixed sulfate–chloride solution. International Journal of Mineral Processing. 2004;74:359.

22 Hubicki Z, Geca M, Kołodyńska D. The effect of the presence of metatartaric acid on removal effectiveness of heavy metal ions on chelating ion exchangers. Environmental Technology. 2011;32:805.

23 Kuz’Min VI, Kuz’Min DV. Sorption of nickel and copper from leach pulps of low-grade sulfide ores using Purolite S930 chelating resin. Hydrometallurgy. 2014;141:76.

5c87b4450e88255b43db04aa tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections