Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191639
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

INFLUÊNCIA DO TEMPO DE REVESTIMENTO NO TAMANHO E ESTABILIDADE DE NANOPARTICULAS DE MAGNETITA PARA TRATAMENTOS DE HIPERTERMIA MAGNÉTICA

INFLUENCE OF THE COATING TIME ON THE SIZE AND STABILIZATION OF MAGNETITE NANOPARTICLES FOR MAGNETIC HYPERTHERMIA TREATMENT

Mara Carolina do Carmo Paresque, Elizabeth Mendes de Oliveira, José Adilson de Castro

Downloads: 1
Views: 1253

Resumo

Em tratamentos de hipertermia magnética, as etapas de produção e revestimento das nanopartículas magnéticas são de fundamental importância para sua funcionalidade e eficiência durante a dinâmica do tratamento. O método de coprecipitação vem sendo utilizado para sintetizar nanopartículas de magnetita (Fe3 O4 ), largamente utilizadas neste tratamento. As mesmas foram recobertas com uma camada polimérica de polietilenoglicol (PEG) visando prevenir a oxidação do núcleo, permitir sua dispersão em água, aumentar sua estabilidade coloidal, bem como evitar a aglomeração das nanopartículas. Foram realizadas cinco sínteses, cada uma delas com tempos da etapa de revestimento das nanopartículas de 10, 20, 30, 50 e 60 minutos, respectivamente. Foram avaliadas a influência do tempo de revestimento no tamanho das partículas utilizando Nanoparticle Traking Analysis (NTA) e a estabilidade do revestimento por TGA/DSC. As nanopartículas revestidas apresentaram diâmetros médios na faixa de 31 a 40 nm. Analises no TGA/DSC permitiram observar a presença de uma camada adsorvida na superfície do núcleo magnético, bem como a eficácia do polietilenoglicol na proteção do núcleo de magnetita.

Palavras-chave

Nanopartículas magnéticas; Magnetita; Polietilenoglicol; Tempos de revestimento.

Abstract

In the magnetic hyperthermia treatment the nanoparticles production and coating procedure are fundamental for the efficiency during the treatment dynamics. The coprecipitation method has been used to synthesize magnetite nanoparticles (Fe3O4). They were coated with a polyethylene glycol (PEG) polymer layer to prevent the oxidation of the magnetic core, to allow dispersion of the nanoparticles in water, to increase their colloidal stability, as well as to avoid the agglomeration of the particles. Five syntheses were carried out with the coating stage of the particles times of 10, 20, 30, 50 and 60 minutes, aiming to evaluate the influence of coating time on the final nanoparticle size using Nanoparticle Traking Analysis (NTA) measurements and coating stability using TGA/DSC techniques. The results indicated that average diameters in the range of 31 to 40 nm were obtained. TGA/DSC results indicated that a stable adsorbed layer on the surface of the magnetic core promoted by the polyethylene glycol is effective in the protection of the magnetite nucleus.

Keywords

Magnetic nanoparticles; Magnetite; Polyethylene glycol; Coating times.

Referências

1 Oliveira EM, Paresque MCC, Silva LM, Lopes LCR, Castro JA. Study of the effects of SiO2 nanoparticles concentration on the TiO2 nanoparticles suspensions stabilization. Materials Science Forum. 2016;899:232-236.

2 Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials. 2015;387:96-106.

3 Lyutyy TV, Hryshko OM, Yakovenko MY. Uniform and nonuniform precession of a nanoparticle with finite anisotropy in a liquid: opportunities and limitations for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials. 2019;473:198-204.

4 Rani S, Varma GD. Superparamagnetism and metamagnetic transition in Fe3O4 nano-particles synthesized via co-precipitation method at different pH. Physica B, Condensed Matter. 2015;472:66-77.

5 Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3 O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2015;135:536-539.

6 Zavisova V, Koneracka M, Gabelova A, Svitkova B, Ursinyova M, Kubovcikova M, et al. Effect of magnetic nanoparticles coating on cell proliferation and uptake. Journal of Magnetism and Magnetic Materials. 2019;472:66-73.

7 García-Jimeno S, Estelrich J. Ferrofluid based on polyethylene glycol-coated iron oxide nanoparticles: Characterization and properties. Colloids and Surfaces. A, Physicochemical and Engineering Aspects. 2013;420:74-81.

8 Ostroverkhov P, Semkina A, Nikitin A, Smirnov V, Vedenyapina D, Vlasova K, et al. Human serum albumin as an effective coating for hydrophobic photosensitizes immobilization on magnetic nanoparticles. Journal of Magnetism and Magnetic Materials. 2019;475:108-114.

9 Patsula V, Moskvin M, Dutz S, Horák D. Size-dependent magnetic properties of iron oxide nanoparticles. Journal of Physics and Chemistry of Solids. 2016;88:24-30.

10 Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids and Surfaces. B, Biointerfaces. 2019;174:42-55.

11 Wang X, Qin M, Fang F, Jia B, Wu H, Qu X, et al. Effect of glycine on one-step solution combustion synthesis of magnetite nanoparticles. Journal of Alloys and Compounds. 2017;719:288-295.

12 Lemal P, Balog S, Geers C, Taladriz-Blanco P, Palumbo P, Hirt AM, et al. Heating behavior of magnetic iron oxide nanoparticles at clinically relevant concentration. Journal of Magnetism and Magnetic Materials. 2019;474:637-642.

13 Gupta AK, Gupta M. Synthesis and surfasse engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021.

14 Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews. 2019;138:302-325.

15 Michele FD, Pizzichelli G, Mazzolai B, Sinibaldi E. On the preliminar design of hyperthermia treatments based on infusion and heating of magnetic nanofluids. Mathematical Biosciences. 2016;262:105-116.

16 Sanz B, Calatayud MP, Torres TR, Fanarraga ML, Ibarra MR, Goya GF. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials. 2017;114:62-70.

17 Harabech M, Leliaert J, Coene A, Crevecoeur G, Roost DV, Dupre L. The effect of the magnetic nanoparticle’s size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials. 2017;426:206-210.

18 Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. International Journal of Pharmaceutics. 2011;403:139-161.

19 Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials. 2004;16:3489-3496

5de941b80e8825b408e31d41 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections