Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191658
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

THE EFFECT OF KEY ASPECTS ON THE THERMOMECHANICAL BEHAVIOUR OF TORPEDO LADLE BRICKS USING FINITE ELEMENT ANALYSIS

O EFEITO DE ASPECTOS CHAVE NO COMPORTAMENTO TERMOMECANICO DE TIJOLOS PARA CARRO TORPEDO UTILIZANDO ANÁLISE POR ELEMENTOS FINITOS

Ana Paula de Miranda Mati, Rubens Alves Freire, Sergio Luiz Cabral da Silva, Paulo Roberto Brandão

Downloads: 1
Views: 1198

Abstract

In the current paper, the effect of some aspects, e.g., thermal expansion, thermal conductivity and hot mechanical behavior, on the thermomechanical behavior of Al2O3-SiC-C brick, typically used in torpedo ladles, is described. Computational modeling by finite element analysis (FEA) was applied in an attempt to better understanding the relative importance of each variable for the development of refractories with enhanced spalling resistance. The simulations by FEA indicated that the failure criteria selected in this work are in accordance with the spalling mechanism proposed in the literature and with practical observations. As the stress values were systematically higher after the breakage of the bricks’ edges, it seems more reasonable to avoid spalling by hindering the formation of broken edges than by avoiding the phenomenon itself. The effect of key aspects on the thermomechanical behavior of Al2O3-SiC-C brick was simulated. The key variables to be controlled are the following: stress, thermal expansion, strain and thermal conductivity

Keywords

FEM; Thermomechanical behavior; Torpedo ladle.

Resumo

No presente trabalho, descreve-se o efeito de alguns aspectos, tais como, expansão térmica, condutividade térmica e comportamento mecânico quente, no comportamento termomecânico do tijolo Al2 O3 -SiC-C, tipicamente usado em panelas de torpedo. Modelagem computacional por análise de elementos finitos (FEA) foi aplicada na tentativa de melhor compreender a importância relativa de cada variável para o desenvolvimento de refratários com maior resistência ao lascamento. As simulações da FEA indicaram que os critérios de falha selecionados neste trabalho estão de acordo com o mecanismo proposto na literatura e com as observações práticas. Como os valores de tensão foram sistematicamente mais altos após a quebra das bordas dos tijolos, parece mais razoável evitar a fragmentação impedindo a formação de bordas quebradas do que evitando o fenômeno em si. O efeito de aspectos-chave no comportamento termomecânico do tijolo Al2 O3 -SiC-C foi simulado. As principais variáveis a serem controladas são as seguintes: tensão, expansão térmica, deformação e condutividade térmica.

Palavras-chave

FEA; Comportamento termomecânico; Carro torpedo.

Referências

1 Gruber D, Auer T, Harmuth H, Zirkl R. Thermal and thermo-mechanical modeling of a 300t torpedo ladle. In: Proceeding of the Unified International Conference of Refractories (UNITECR). 2005; Osaka, Japan. New Jersey: John Wiley & Sons, Inc.

2 Andreev K, Zinngrebe E, Heijboer WM, Ham PJN, Everstein SJ. Compressive behavior of ACS torpedo bricks. In: Proceeding of the Unified International Conference of Refractories (UNITECR). 2009; Salvador, Brazil. New York: Curran Associates, Inc.

3. Hirota, T., Sakaguchi, M., Oguchi, Y. Deformation behavior under load of Al2 O3 -SiC-C bricks for torpedo car. Taikabutsu Overseas. 1995;15:42-47.

4 Ko Y-H, Ko Y-C. Simulated service test of torpedo ladle brick. American Ceramic Society Bulletin. 1983;62:1010-1012.

5 Larson DR, Coppola JA, Hasselman DPH, Bradt RC. Fracture toughness and spalling behavior of high Al2 O3 refractories. Journal of the American Ceramic Society. 1974;57:417-421.

6 Andreev K, Harmuth H. FEM simulation of the thermo-mechanical behaviour and failure of refractories – a case study. Journal of Materials Processing Technology. 2003;143-144:72-77.

7 Gruber D, Andreev K, Harmuth H. FEM simulation of the thermo-mechanical behavior of the refractory lining of a blast furnace. Journal of Materials Processing Technology. 2004;155-156:1539-1543.

8 Auer T, Gruber D, Harmuth H, Triessinig A. Numerical investigations of mechanical behavior of refractories. In: Proceeding of the Unified International Conference of Refractories (UNITECR). 2005; Orlando, USA. New Jersey: John Wiley & Sons, Inc.

9 Dahlem E, Gruber D, Auer T, Harmuth H, Huger M, Chotard T. Evaluation of the Drucker-Prager parameters (Cohesion and Friction angle) at elevated temperature for two refractories. In: Proceeding of the Unified International Conference of Refractories (UNITECR); 2011; Kyoto, Japan. Cidade: editora; 2011. p. 2-B1-4.

10 Landa YA, Litovskii EY, Glazachev BS, Puchelevich NA, Klimovic AV. Hot-wire method of determining the thermal conductivity of refractory materials. Refractories and Industrial Ceramics. 1978;19:561-565.

11 American Society for testing and materials. ASTM C1113/C1113M – 09. Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique). West Conshohocken: ASTM; 2013.

12 Matsuo A, Miyagawa S, Ogasahara K, Yokoi M, Kawakami T. Effect of different source of natural Al2O3 and different amount of C upon the durability for Al2O3-SiC-C brick in torpedo car. Taikabutsu Overseas. 1985; volume 1, numero 21-25.

13 Hayashi S, Takarashi H, Watanabe A, Osaka A, Miura Y. Relation between the mechanical properties of MgO-C bricks and the graphite content. Taikabutsu Overseas. 1993; volume 2, numero:12-18.

14 Hino Y, Kiyota Y. Fatigue fracture behavior of MgO-C bricks. In: Proceedings of the Unified International Conference on Refractories (UNITECR). 2011; Kyoto, Japan. Kyoto: UNITECR; 2011. P. 1-E-6.

15 Khezrabadi MN, Javadpour J, Rezaie HR, Naghizadeh R. The effect of additives on the properties and microstructure of Al2O3-C refractories. Journal of Materials Science. 2006;41(10):3027-3032.

5d2785760e8825d74e67de05 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections