Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191714
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ANÁLISE COMPARATIVA DE CARGAS DE LAMINAÇÃO A QUENTE INDUSTRIAIS COM AS OBTIDAS ATRAVÉS DE MODELAMENTO MATEMÁTICO

COMPARATIVE ANALYSIS OF INDUSTRIAL HOT ROLLING LOADS AND THOSE OBTAINED THROUGH MATHEMATICAL MODELING

Evaldo Diniz Dias, Jose Adilson de Castro, Fabio de Oliveira Araújo, Carlos Roberto Xavier, Alexandre Pimentel Sampaio

Downloads: 0
Views: 1066

Resumo

Uma análise comparativa entre as cargas de laminação calculadas através dos modelos de Sims, Orowan-Pascoe e Ekelund é realizada a fim de verificar o melhor desempenho, frente aos valores registrados durante o processamento de aços C-Mn e ao nióbio em um trem acabador de tiras a quente industrial. Para determinação da tensão média de escoamento são utilizadas as equações de Shida, Poliak & Siciliano, Siciliano, Marini & Bruna, Siciliano, Leduc & Hensger, Misaka e Siciliano & Jonas . Na comparação direta entre os valores calculados e os reais, os melhores níveis de precisão são obtidos quando os modelos de previsão de carga são combinados a equação de Shida, respectivamente Sims, Orowan-Pascoe e Ekelund. Neste trabalho são propostos fatores de correção visando obter maior previsibilidade para o processo industrial durante a laminação de acabamento. Com a aplicação dos fatores de ajuste as equações de previsão de carga apresentaram erros médios globais no trem de acabamento, variando entre 4,3 e 5,6% para os aços C-Mn e 4,6 e 6,3% para aços microligados ao nióbio.

Palavras-chave

Laminação a quente; Cargas; Modelamento matemático.

Abstract

A comparison between the rolling loads calculated through the theoretical models of Sims, Orowan-Pascoe and Ekelund is performed in order to verify the performance of the models compared to the real values recorded during the processing of plain carbon-manganese steels and niobium steels during the finish rolling in the hot strip mill. To determine the hot deformation resistance, the equations of Shida, Poliak & Siciliano, Siciliano, Marini & Bruna, Siciliano, Leduc & Hensger, Misaka and Siciliano & Jonas are used. In the direct comparison between the calculated values and the actual values the best level of precision is obtained when the load prediction models are combined with the Shida equation, respectively Sims, Orowan-Pascoe and Ekelund. In order to better adjust calculated loads to the reality of the industrial process, adjustment factors are proposed for each of the seven stands of the finishing mill. With the application of the adjustment factors, the load prediction equations presented global mean errors in the finishing mill, varying between 4.3 and 5.6% for C-Mn steels and 4.6 and 6.3% for niobium steels.

Keywords

Hot rolling; Loads; Mathematical modeling

Referências

1 Devadas C, Baragar D, RuddleI G, Samarasekera V, Hawbolt EB. The thermal and metallurgical state of steel strip during hot rolling: part ii. factors influencing rolling loads. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1991;22:335-349.

2 Orowan E. The calculation of roll pressure in hot and cold flat rolling. Proceedings of the Institution of Mechanical Engineers. 1943;150:140-167.

3 Wusatowski Z. Fundamentals of rolling. Oxford: Pergamon; 1969.

4 Gorni A, Silva M. Comparação entre os modelos para o cálculo de carga na laminação a quente industrial. Tecnologica em Metalurgia, Materiais e Mineração. 2012;9:197-203.

5 Sims RB. The calculation of roll force and torque in hot rolling mills. Proceedings - Institution of Mechanical Engineers. 1954;168:191-214.

6 Ekelund S. Analysis of factors influencing rolling pressure and power consumption in the hot rolling of steel. Vol. 93. [S.l.]: [s.n.]; 1933. p. 39.

7 Hodgson P. Models of the recrystallisation behaviour of c-mn and nb microalloyed steels during hot working processes. Materials Forum. 1993;17:403-408.

8 Misaka Y, Yoshimoto T. Formulation of mean resistance of deformation of plain carbon steel at elevated temperature. Journal of the Japan Society for Technology of Plasticity. 1967-1968;8:414-422.

9 Shida S. Effect of carbon content, temperature and strain rate on compressive flow stress of carbon steel. Hitachi Research Lab Report. 1974;1:1416-1425.

10 Kirihata A, Siciliano F Jr, Maccagno TM, Jonas JJ. Mathematical modelling of mean flow stress during the hot strip rolling of multiply-alloyed medium carbon steels. ISIJ International. 1998;38(2):187-195.

11 Poliak EI, Siciliano F. Hot deformation behavior of Mn-Al and Mn-Al-Nb steels. In: Materials Science & Technology Conference; 2004; New Orleans, USA. Loisiana: AIST; 2004. pp. 39-45.

12 Siciliano F, Marini O, Bruna RG. The effect of chemical composition on the hot deformation resistance during hot strip rolling of microalloyed steels processed at the Sidor hot strip mill. In: Super High Strength Steels Conference Proceedings, Associazione Italiana di Metallurgia; 2005 November; Roma. Milão: Associazione Italiana di Metallurgia; 2005.

13 Dimatteo A, Vannucci M, Colla V. Prediction of mean flow stress during hot strip rolling using genetic algorithms. ISIJ International. 2014;54:171-178.

14 Shida S. Empirical formula of flow stress of carbon steels: resistance to deformation of carbon steels at elevated temperature. Japan Society for Technology Plasticity. 1969;10:610-617.

15 Shafiei E, Goodarzi N, Dehghani K, Tehrani AS. A new constitutive equation to predict single peak flow stress curves at high temperatures: a comprehensive study on different steels. Canadian Metallurgical Quarterly. 2017;56(1):104-112.

16 Siciliano F, Jonas JJ. Mathematical modeling of the hot strip rolling of Nb microalloyed, Cr-Mo and Plain C-Mn Steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2000;31:511.

17.Siciliano F, Leduc LL, Hensger KH. The hot deformation resistance and microstructure evolution during processing of microalloyed steels in thin slab casting/direct rolling process. In: Czech Metallurgical Society. Proceedings of the Steelsim-Simulation and Modelling of Metallurgical Processes in Steelmaking; 2005 October 25-27; Brno, Czech Republic. Ostrava, Vitkovice: Czech Metallurgical Society; 2005.

18 Alghamdi F. Mathematical Modeling of Mean Flow Stress (MFS) during Hot Strip Rolling for HSLA steels [thesis]. Montreal: McGill University; 2014.

19 Roberts WL. Tribological considerations in the hot-rolling of low-carbon steels. Lubrication Engineering. 1977;33:575-580.

20 Poliak EI, Shim MK, Kim GS, Choo WY. Application of linear regression analysis in accuracy assessment of rolling force calculations. Metals and Materials. 1998;4:1047-1056.

5d9cd28f0e8825cf69c12059 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections