Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191731
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

COMPARATIVE STUDY BY TEM, EBSD AND MICROHARDNESS OF THE MICROSTRUCTURE OF COPPER WIREDRAWN AT 77 K AND 295 K

ESTUDO COMPARATIVO USANDO MET, EBSD E MICRODUREZA DA MICROESTRUTURA DO COBRE TREFILADO A 77 K E 295 K

Marcos Paulo Pereira Leis, Sheyla Santana de Carvalho, Talita Gama Sousa, Simone Izabel Vieira de Santana, Luiz Paulo Branda

Downloads: 1
Views: 1153

Abstract

Copper has limited application in coils of high magnetic field electromagnets because of its low mechanical strength. In this work, the mechanical strength of copper wire was increased through severe wiredrawing in several steps at 77 K and transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and Vickers microhardness were used to study the evolution of the microstructure of the material. Comparison of the results with those obtained processing the same material at room temperature (295 K) led to a better understanding of the hardening mechanisms. The wires drawn at 295 K showed dynamic recovery structures, while the wires drawn at 77 K showed a partial recrystallization microstructure. The fact that the Vickers microhardness of the wires wiredrawn at 77 K was about 50% higher than those wiredrawn at 295 K suggests that cryogenic deformation was effective in delaying the recovery of the material.

Keywords

High strength; High conductivity; EBSD; TEM.

Resumo

O cobre tem aplicação limitada em bobinas de eletromagnetos de alto campo magnético devido à sua baixa resistência mecânica. Neste trabalho, a resistência mecânica do cobre foi aumentada através de trefilação severa a 77 K em várias etapas. A microscópia eletrônica de transmissão (MET), a difração de elétrons retorespalhados (EBSD) e a microdureza Vickers foram usadas para o estudo da evolução microestrutural do material. A comparação dos resultados com o mesmo material processado em temperature ambiente (295 K) levou a uma melhor compreensão dos mecanismos de endurecimento. Fios trefilados em 295 K mostraram estruturas de recuperação dinâmica, enquanto que os fios trefilados a 77 K mostraram uma microestrutura de recristalização parcial. O fato da microdureza Vickers do fio trefilado a 77 K seja cerca de 50% maior do que os fios trefilados a 295 K sugere que a deformação criogênica foi efetiva em retardar a recuperação do material.

Palavras-chave

Alta dureza; Alta condutividade; EBSD; MET.

Referências

1 Embury JD, Han K. Conductor materials for high field magnets. Current Opinion in Solid State and Materials Science. 1998;3:304-308.

2 Brandao L, Walsh RP, Han K, Embury JD, Van S. New cryogenic processing for the development of high strength copper wire for magnetic application. Advances in Cryogenic Engineering. 2000;46:89-96.

3 Brandao L, Han K, Embury JD, Walsh R, Toplosky V, Van S. Development of high strength pure copper wires by cryogenics deformation for magnet applications. IEEE Transactions on Applied Superconductivity. 2000;10:1284-1287.

4 Niewczas M, Basinski ZS, Embury JD. Deformation of copper single crystals to large strains at 4,2 K, II. Transmission electron microscopy observations of defect structure. Philosophical Magazine. A. Physics of Condensed Matter. Structure, Defects and Mechanical Properties. 2001;81:1143-1159.

5 Kauffmann A, Freudenberger J, Geissler D. Severa deformation twinning in pure copper by cryogenic wire drawing. Acta Materialia. 2011;59:7816-7823.

6 Sousa TG, Sordi VL, Brandao LP. Dislocation density and texture in copper deformed by cold rolling and ECAP. Materials Research. 2018;21(1):e20170515.

7 Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Materialia. 2008;56:230-241.

8 Bay B, Hansen N, Kuhlmann-Wilsdorf D. Microstructural evolution in rolled aluminium. Materials Science and Engineering A. 1992;158:139-146.

9 Hugues DA, Hansen N, Bammann DJ. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Materialia. 2003;48:147-153.

10 Gonzalez B, Murr LE, Valerio OL, Esquivel EV, Lopez H. Microbands and microtwins associated with impact craters in copper and brass targets: the role of stacking fault energy. Materials Characterization. 2003;49:359-366.

11 Carvalho SS, Sousa TG, Brandão LP. Crystallographic texture and microtexture of copper drawn at 295 K and 77 K. Revista Matéria.

12 Hugues DA, Hansen N. High angle boundaries formed by grain subdivision mechanism. Acta Metallurgica et Materialia. 1997;45:3871-3886.

13 Kauffmann A, Geissler D, Freudenberger J. Thermal stability of electrical and mechanical properties of cryo-drawn Cu and CuZr wires. Materials Science and Engineering A. 2016;651:567-573.

5d1219c60e8825cf545a3d52 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections