Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191775
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

AVALIAÇÃO DA PRESENÇA DE SOLUTO EM FOLHAS DE ALUMÍNIO

EVALUATION OF THE PRESENCE OF SOLUTE IN ALUMINIUM FOIL

Leandro de Almeida, Gustavo Tressia

Downloads: 1
Views: 1172

Resumo

Folhas de alumínio com espessura inferior a 200 µm são utilizadas em inúmeras aplicações, como na fabricação de diferentes produtos, embalagens descartáveis, aletas de radiadores e blisters que necessitam de boa resistência a corrosão aliada a resistência mecânica. O ferro presente nas ligas de alumínio da série 1xxx e 8xxx, forma nas ligas duas principais fases secundarias Al3 Fe e α-AlFeSi (dispersóides), alterando a cinética de recristalização, obtendo-se assim excelentes limites de resistência e alongamentos pós recozimento. O silício em conjunto com o ferro forma variações de fases como Ɵ-Al13Fe4 (monoclínica), Al6 Fe (ortorrômbica), Al12Fe3 Si e Al3 Fe, sendo controladas na solidificação possibilitando obter excelentes resultados de propriedades mecânicas. O manganês presente nas ligas da série 3xxx forma duas principais fases Al6 (Mn,Fe) e α-Al12(Fe,Mn)2 Si, porém, na existência do silício se transforma parcialmente em Al12(Fe, Mn)3 Si, sendo muitas propriedades fortemente dependentes do tipo e forma dessas partículas, sendo assim, a obtenção da microestrutura deve ser controlada na solidificação e processos seguintes

Palavras-chave

Folhas de alumínio; Ferro; Silício; Manganês.

Abstract

Aluminum foils with a thickness of less than 200 µm are used in numerous applications, such as the manufacture of different products, disposable packaging, radiator fins and blisters. These applications require both good corrosion resistance and mechanical strength. Iron present in 1xxx and 8xxx aluminium alloys forms two main secondary phases: Al3 Fe and α-AlFeSi, the last one as dispersoids, altering the kinetics of recrystallization and therefore giving rise to excellent strength and elongations after annealing. Silicon and iron form phases such as Ɵ-Al13Fe4 (monoclinic), Al6 Fe (orthorhombic), Al12Fe3 Si and Al3 Fe, which are controlled during solidification to improve mechanical properties. Manganese present in 3xxx alloys may form two main phases Al6 (Mn, Fe) and α-Al12(Fe, Mn)2 Si, but Al12(Fe, Mn)3 Si may also be present when silicon is added so many properties are strongly dependent on both type and particles shapes, Thus, microstructure must be well controlled in the solidification and subsequent processes.

Keywords

Aluminium foil; Iron; Silicon; Manganese.

Referências

1 Kerry J. Aluminium foil packaging. Ireland: University College Cork; 2012. p. 163-177.

2 Kerth W, Amann E, Räber X, Weber H. Aluminium foil production. International Metallurgical Reviews. 1975;20:185-207.

3 Associação Brasileira de Normas Técnicas. ABNT NBR8310 – Alumínio e suas ligas – Folhas – Requisitos. Rio de Janeiro: ABNT; 2008. 9 p.

4 American Society for Testing and Materials. ASTM B479 – Standard Specification for Annealed Aluminum and Aluminum-Alloy Foil for Flexible Barrier, Food Contact, and Other Applications. West Conshohocken: ASTM; 2006. 7 p.

5 Sanders RE Jr. Continuous casting for aluminum sheet: a production perspective. JOM. 2012;64(2):291-301.

6 Can A, Arikan H, Çinar K. Analysis of twin-roll casting AA8079 alloy 6,35-µm foil rolling process. Materials Technology. 2016;50(6):861-868.

7 Souza FM, Lima NB, Plaut RL, Fernandes CR, Padilha AF. Um estudo comparativo entre chapas produzidas pelos processos de lingotamento continuo e de lingotamento semicontínuo da liga AA4006: microestrutura e textura cristalográfica. Revista Escola Minas. 2012;65(2):207-216.

8 Keles O, Dundar M. Aluminum foil: its typical quality problems and their causes. Journal of Materials Processing Technology. 2007;186(1-3):125-137.

9 Souza FM. Estudo da microestrutura, da textura cristalográfica e da recristalização em chapas obtidas por lingotamento continuo e semcontínuo da liga de alumínio AA4006 [tese]. São Paulo: Escola Politécnica, Universidade de São Paulo; 2012.

10 Sanders RE Jr, Hollinshead PA, Simielli EA. Industrial development of non-heat treatable aluminum alloys. Materials Forum. 2004;28:53-64.

11 Birol Y. Recrystallization of a supersaturated Al-Mn alloy. Scripta Materialia. 2008;59(6):611-614.

12 Zander J, Sandström R, Vitos L. Modelling mechanical properties for non-hardenable aluminium alloys. Computational Materials Science. 2007;41(1):86-95.

13 Poková M, Cieslar M, Slámová M. The influence of dispersoids on the recrystallization of aluminium alloys. International Journal of Materials Research. 2009;100(3):391-394.

14 Alexander DTL, Greer AL. Solid-state intermetallic phase transformations in 3XXX aluminium alloys. Acta Materialia. 2002;50(10):2571-2583.

15 Huang CY, Liu Y, Li Q, Liu X, Yang GC. Relevance between microstructure and texture during cold rollling of AA3104 aluminum alloy. Journal of Alloys and Compounds. 2016;673:383-389.

16 Li YJ, Muggerud AMF, Olsen A, Furu T. Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Materialia. 2012;60(3):1004-1014.

17 Schneider W, Laptyeva G, Lentz M, Karhausen KF. Through process microchemistry effect on the properties of 8xxx sheet. Materials Science Forum. 2012;706-709:323-328.

18 Birol Y. Impact of homogenization on recrystallization of a supersaturated Al-Mn alloys. Scripta Materialia. 2009;60(1):5-8.

19 Heering C, Li X, Bambach M, Hirt G. Physical and numerical simulation of cold rolling of an AlFeSi alloy in consideration of static recovery. Advanced Engineering Materials. 2010;12(3):141-146.

20 Lentz M, Laptyeva G, Engler O. Characterization of second-phase particules in two aluminium foil alloys. Journal of Alloys and Compounds. 2016;660:276-288.

21 Birol Y. Recrystallization of twin-roll cast Al-Fe-Si foil stock processed without homogenization. Journal of Alloys and Compounds. 2009;488(1):112-116.

22 Engler O, Laptyeva G, Wang N. Impact of homogeneization on microchemistry and recrystallization of the Al-Fe-Mn alloy AA 8006. Materials Characterization. 2013;79:60-75.

23 Hasenclever J. Microstructure and properties of AlFe-alloys (AA 1050-AA 8021) for packaging. In: Proceedings of the 9th International conference on aluminum alloys; 2004; Germany. Brisbane : Institute of Materials engineering Australasia.

24 Birol Y. Formation of pinch marks on pack rolled aluminium foil. Engineering Failure Analysis. 2013;28:82-89.

25 Dai Q, Zhang D, Chen X, Dong J, Pan F. Research on pinholes in aluminum foil. Advanced Materials Research. 2014;884-885:308-311.

5d8e560d0e8825910a140c97 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections