CORROSÃO SOB TENSÃO EM SOLDA CIRCUNFERENCIAL DE AÇO API 5L X70 EM CONTATO COM ETANOL
STRESS CORROSION CRACKING OF CIRCUMFERENTIAL WELDING JOINT IN API 5L X70 LINE PIPE IN ETHANOL ENVIRONMENT
Vinícius Girogetti, Javier Alejandro Carreno Velasco, Rodrigo Vieira Landim, Vitor Luiz Sordi
Resumo
As juntas de solda de campo circunferenciais usadas na construção de dutos para transporte de petróleo e derivados constituem regiões susceptíveis a defeitos que podem levar a falhas em operação. Neste trabalho uma junta circunferencial de um duto de aço API 5L X70 foi produzida em laboratório e avaliada por meio de ensaios de dureza, tração e impacto; a corrosão sob tensão promovida pela exposição ao etanol combustível foi avaliada em ensaios de tração com baixa taxa de deformação em corpos de prova com entalhes posicionados nas distintas regiões da solda; as microestruturas do material de base e da região soldada foram caracterizadas por microscopia ótica e as superfícies fraturadas foram analisadas ao MEV. A análise da fratura após em ensaios de tração e de impacto indicou que as descontinuidades da solda, ainda que qualificada, interferem significativamente no mecanismo de fratura, tendendo à fragilização, especialmente nos testes de impacto. A susceptibilidade à corrosão sob tensão ficou evidente, tanto na zona termicamente afetada quanto no metal de solda, promovendo perda de ductilidade e acelerando o processo de fratura nos ensaios de baixa taxa de deformação em presença de etanol.
Palavras-chave
Abstract
Circumferential field-welding joints of oil pipelines are susceptible to defects that may lead to failures when in operation. In this work a circumferential joint of an API 5L X70 line pipe was produced in a laboratory and evaluated by hardness, tensile and impact tests; stress corrosion cracking promoted by exposition to fuel ethanol was evaluated by slow strain rate tensile tests using notched specimens; the micro-structures were characterized by optical microscopy in the different regions of the welded joint and the fractured surfaces were analyzed by SEM. The fracture surface of the welding metal after tensile and impact tests indicated that the presence of welding discontinuities may strongly affect the fracture behavior, leading to embrittlement, especially in the impact tests. Stress corrosion cracking occurred in both evaluated regions (welding metal and heat affected zone) of the welds when subjected to slow strain rate tensile tests in contact with ethanol.
Keywords
Referências
1 American Petroleum Institute. API Specification 5L. Specification for Line Pipe. 45th ed. Washington: API; 2012.
2 Kane RD, Maldonado JG. Stress corrosion cracking of carbon steel in fuel grade ethanol: Review and survey. Publication 939D. Washington: American Petroleum Institute; 2003.
3 American Petroleum Institute. API Standard 1104: Welding of pipelines and related facilities. Edition 21st. Washington: API; 2013.
4 American Society for Testing and Materials. ASTM E384-17: Standard Test Method for Microindentation Hardness of Materials. West Conshohocken: ASTM International; 2017.
5 American Society for Testing and Materials. ASTM E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: ASTM International; 2016.
6 NACE International. NACE Standard TM0111 - Item No. 21255. Standard Test Method: Slow Strain Rate Test Method for Evaluation of Ethanol Stress Corrosion Cracking in Carbon Steels. Houston: NACE International; 2011.
7 American Society for Testing and Materials. ASTM D4806-13a: Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel. West Conshohocken: ASTM International; 2013.
8 American Society for Testing and Materials. ASTM E23-18: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. West Conshohocken: ASTM International; 2018.
9 Zhao MC, Yang K, Shan YY. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Materials Science and Engineering A. 2002;335:14-20.
10 Zhao MC, Yang K, Xiao FR, Shan YY. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels. Materials Science and Engineering A. 2003;355:126-136.
11 Francisco J.C.S. Resistência à propagação dúctil de trincas em aço API 5L X 70 com teor de nióbio modificado. (tese). São Carlos: Escola de Engenharia de São Carlos, Universidade de São Paulo; 2015.
12 Barbosa V. S. Avaliação da integridade estrutural em um tubo de aço API 5L X70 através da propagação de trincas por fadiga (dissertação). Guaratinguetá: Faculdade de Engenharia, Universidade Estadual Paulista; 2014.
13 Albuquerque SF, Maciel TM, Santos MA, Bracarense AQ. Avaliação da microestrutura e propriedades mecânicas de metais de solda obtidos por processos de soldagem manual e automatizado utilizado na soldagem de aço API 5L X80. Soldagem e Inspeção. 2011;16:322-332.
14 Albuquerque SF, Maciel TM, Santos MA, Lima IE. Avaliação das propriedades mecânicas de uma junta soldada de uma tubulação de aço API 5L-X60. Soldagem e Inspeção. 2003;8:30-38.
15 Hashemi SH, Mohammadyani D. Characterization of weldment hardness, impact energy and microstructure in API X65 steel. International Journal of Pressure Vessels and Piping. 2012;98:8-15.
16 Hashemi SH. Apportion of charpy energy in API 5L grade X70 pipeline steel. International Journal of Pressure Vessels and Piping. 2008;85:879-884.
17 Haskel HL, Pauletti E, Martins JP, Carvalho ALM. Microstructure and microtexture assessment of delamination phenomena in Charpy impact tested specimens. Materials Research. 2014;17:1238-1250.
18 Joo MS, Suh DW, Bhadeshia HKDH. Mechanical anisotropy in steels for pipelines. The Iron and Steel Institute of Japan. ISIJ International. 2013;53:1305-1314.
19 Ruggieri C. Hippert E Jr. Delamination effects on fracture behaviour of a pipeline steel: a numerical investigation of 3-D crack front fields and constraint. International Journal of Pressure Vessels and Piping. 2015;128:18-35.
20 Thompson SW, Howelli PR. Factors influencing ferrite/perlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel. Materials Science and Technology. 1992;8(9):777-784.
21 Fearnehough GD. Fracture propagation control in gas pipelines: a survey of relevant studies. International Journal of Pressure Vessels and Piping. 1974;2:257-282.
22 Lou X, Singh PM. Phase angle analysis for stress corrosion cracking of carbon steel in fuel-grade ethanol: Experiments and simulation. Electrochimica Acta. 2011;56:1835-1847.
23 American Petroleum Institute. Stress corrosion cracking of carbon steel in fuel-grade ethanol: review, experience survey, filed monitoring, and laboratory testing: API Technical Report 939-D. 2nd ed. Washington: API; 2007.
24 Beavers JA, Gui F, Sridhar N. Effects of environmental and metallurgical factors on the stress corrosion cracking of carbon steel in fuel-grade ethanol. Corrosion. 2011;67(2):1-15.
25 Bretenbach JO, Renck TS, Kwitniewski CEF, Strohaecker TR, Pimenta GS, Baptista IP et al. Evaluation of the notch influence on the stress corrosion cracking susceptibility of the API 5L X70 steel in ethanol. Corrosion Science. 2104;70(9):907-914.
26 Kane RD. Use of NACE TM0111 slow strain rate test for evaluation of ethanol SCC. In: NACE International - Corrosion 2015 Conference & Expo; 2015 March 15-19; Dallas, USA. Houston: NACE International; 2015. Paper No 5945.