Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191938
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ANÁLISE EM CONDIÇÕES NÃO ISOTÉRMICAS DE UM AÇO INOXIDÁVEL SUPERDUPLEX ASTM A182 – F53 VIA DILATOMETRIA

ANALYSIS IN NON-ISOTHERMAL CONDITIONS OF SUPERDUPLEX STAINLESS STEEL ASTM A182 – F53 BY DILATOMETRY

Camila dos Santos Pinto, Gabrielle Cristine Lemos Duarte Freitas, Isabele Cristina Abreu de Sá, Gláucio Soares da Fonseca, Luciano Pessanha Moreira, Paulo Rangel Rios

Downloads: 1
Views: 1299

Resumo

O aço ASTM A182 – F53, comercialmente SAF 2507, conhecido como superduplex, é frequentemente utilizado em indústrias offshore, de papel e celulose, devido a suas ótimas propriedades mecânicas e de resistência à corrosão, em função da estrutura balanceada de ferrita e austenita. Quando submetido a elevadas temperaturas, este balanço entre as fases pode ser comprometido e fases intermetálicas que degradam suas propriedades e limitam a sua utilização podem precipitar. A principal fase intermetálica é a fase sigma que nucleia e cresce no aço inoxidável e como consequência degrada as suas propriedades mecânicas e de resistência à corrosão. Os principais estudos na área simulam situações de envelhecimento, mantendo o material em um patamar isotérmico, para propiciar a formação desta fase e resfriamento rápido para posterior caracterização da fase sigma. Neste trabalho, as amostras sofreram ciclos térmicos (CT) de resfriamento sob taxas controladas em condições não isotérmicas em um simulador termomecânico Gleeble. A caracterização microestrutural após os CT foi realizada via microscopia ótica e eletrônica de varredura acoplada com detector de espectro de energia dispersiva. Como resultado, a ferrita se transforma em austenita secundária e fase sigma. O que é confirmado pela microscopia/EDS e pelos picos de temperaturas indicando a transformação de ferrita em fase sigma nas curvas dilatométricas.

Palavras-chave

Aço inoxidável superduplex; Transformações de fase; Transformação não isotérmica; Simulação Física, Dilatometria.

Abstract

The Steel ASTM A182 – F53, commercially SAF 2507, known as superduplex, is widely used in offshore, pulp and paper industries due to its excellent mechanical properties and corrosion resistance, depending on the balanced structure of ferrite and austenite. When subjected to high temperatures, this balance between phases can be compromised, and intermetallic phases that degrade their properties and limit their use may precipitate. The main intermetallic phase is the sigma phase that nucleates and grows in stainless steel and therefore degrades its mechanical properties and corrosion resistance. The main studies in the area simulate aging situations, keeping the material in an isothermal level, to provide the formation of this phase and rapid cooling for later characterization of the sigma phase. In this work, the samples were submitted to thermal cooling cycles (TC) under controlled rates in non-isothermal conditions in a Gleeble thermomechanical simulator. Microstructural characterization after TC was performed by optical microscopy and scanning electron microscopy coupled to a dispersive energy spectrum detector. As a result, the ferrite turns into secondary austenite and sigma phase. That is confirmed by microscopy/EDS and temperature peaks indicating the transformation of ferrite into sigma phase in the dilatometric curves.

Keywords

Stainless steel superduplex; Phase transformations; Non-isothermal transformation; Physical simulation; Dilatometry

Referências

1 Fonseca GS, Mendes PSN, Silva ACM. Sigma phase: nucleation and growth. Metals. 2019;9(1):34. http://dx.doi.org/10.3390/met9010034.

2 Fonseca G, Barbosa L, Ferreira E, Xavier C, Castro J. Microstructural, mechanical, and electrochemical analysis of duplex and superduplex stainless steels welded with the autogenous TIG process using different heat input. Metals. 2017;7(12):538. http://dx.doi.org/10.3390/met7120538.

3 Fonseca GS, Oliveira PM, Diniz MG, Bubnoff DV, Castro JA. Sigma phase in superduplex stainless steel: formation, kinetics and microstructural path. Materials Research. 2017;20(1):249-255. http://dx.doi.org/10.1590/1980-5373-mr-2016-0436.

4 Gennari C, Pezzato L, Piva E, Gobbo R, Calliari I. Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 Duplex Stainless Steel. Materials Science and Engineering A. 2018;729:149-156. http://dx.doi.org/10.1016/j.msea.2018.05.063.

5 Santos DC, Magnabosco R. Kinetic study to predict sigma phase formation in duplex stainless steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2016;47(4):1554-1565. http://dx.doi.org/10.1007/s11661-016-3323-z.

6 Sathirachinda N, Pettersson R, Pan J. Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS. Corrosion Science. 2009;51(8):1850-1860. http://dx.doi.org/10.1016/j.corsci.2009.05.012.

7 Escriba DM, Materna-Morris E, Plaut RL, Padilha AF. Chi-phase precipitation in a duplex stainless steel. Materials Characterization. 2009;60(11):1214-1219. http://dx.doi.org/10.1016/j.matchar.2009.04.013.

8 Magnabosco R. Kinetics of sigma phase formation in a duplex stainless steel 2. Experimental procedure. Materials Research. 2009;12(3):321-327. http://dx.doi.org/10.1590/S1516-14392009000300012.

9 Calliari I, Zanesco M, Ramous E. Influence of isothermal aging on secondary phases precipitation and toughness of a duplex stainless steel SAF 2205. Journal of Materials Science. 2006;41(22):7643-7649. http://dx.doi.org/10.1007/s10853-006-0857-2.

10 Dobranszky J, Szabo PJ, Berecz T, Hrotko V, Portko M. Energy-dispersive spectroscopy and electron backscatter diffraction analysis of isothermally aged SAF 2507 type superduplex stainless steel. Spectrochimica Acta. Part B, Atomic Spectroscopy. 2004;59(10-11):1781-1788. http://dx.doi.org/10.1016/j.sab.2004.07.010.

11 Villanueva DME, Junior FCP, Plaut RL, Padilha AF. Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex. Materials Science and Technology. 2006;22(9):1098-1104. http://dx.doi.org/10.1179/174328406X109230.

12 Elmer JW, Palmer TA, Specht ED. Direct observations of sigma phase formation in duplex stainless steels using In-situ synchrotron X-ray diffraction. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2007;38(3):464-475. http://dx.doi.org/10.1007/s11661-006-9076-3.

13 Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, Maza H. Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds. Materials Characterization. 2008;59(4):447-453. http://dx.doi. org/10.1016/j.matchar.2007.03.004.

14 Fan K, Liu F, Ma YZ, Yang GC, Zhou YH. Modeling of σ-phase precipitation in a 2205 duplex stainless steel using an analytical soft impingement treatment. Materials Science and Engineering A. 2010;527(18-19):4550-4553. http://dx.doi.org/10.1016/j.msea.2010.04.074.

15 Padilha AF, Rios PR. Decomposition of austenite in austenitic stainless steels. ISIJ International. 2002;42(4):325-327. http://dx.doi.org/10.2355/isijinternational.42.325.

16 Mittemeijer EJ, Cheng L, Schaaf PJ, Brakman CM, Korevaar BM. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1988;19. http://dx.doi.org/10.1007/bf02628377.

17 Kim Y. Phase transformation in cast duplex stainless steels [thesis]. Ames: Iowa State University; 2004.

18 Kim YJ, Chumbley LS, Gleeson B. Continuous cooling transformation in cast duplex stainless steels CD3MN and CD3MWCuN. Journal of Materials Engineering and Performance. 2008;17(2):234-239. http://dx.doi.org/10.1007/s11665-007-9134-z.

19 Rivolta B, Gerosa R, Tavasci F. The dilatometric technique for studying sigma phase precipitation kinetics in F55 steel grade. Journal of Thermal Analysis and Calorimetry. 2018;132(2):869-877. http://dx.doi.org/10.1007/s10973-017-6940-x.

20 Russ JC, Dehoff RT. Practical stereology. 2nd ed., New York: Kluwer Academic/Plenum Publishers; 2000. http://dx.doi.org/10.1007/978-1-4615-1233-2.

21 Londoño AJR. Estudo da precipitação de nitreto de cromo e fase sigma por simulação térmica da zona afetada pelo calor na soldagem multipasse de aços inoxidáveis duplex [dissertação]. São Paulo: Universidade de São Paulo; 1997.

22 Lopes JTB. Influência da presença de fases frágeis e da temperatura nas propriedades de propagação de trinca por fadiga do aço inoxidável duplex UNS S31803 [tese]. Campinas: Universidade Estadual de Campinas; 2006.

5e161ba40e8825967e06cc01 tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections