Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20191946
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

ESTUDO DA MORFOLOGIA, TAMANHO, DISTRIBUIÇÃO E PRECIPITAÇÃO SOBRE ÓXIDOS DE INCLUSÕES DE SULFETOS DE MANGANÊS EM AÇOS RESSULFURADOS

STUDY OF MORPHOLOGY, SIZE, DISTRIBUTION AND PRECIPITATION ON OXIDES OF INCLUSIONS OF MANGANESE IN RESULPHURISED STEELS

Alexsandro Bobsin, Wagner Viana Bielefeldt, Antônio Cezar Faria Vilela

Downloads: 1
Views: 1185

Resumo

O enxofre tem influência direta nas propriedades mecânicas nas diversas classes de aços, principalmente se formar FeS que reduz a resistência no trabalho a quente, devido ao seu baixo ponto fusão. A fim de que o teor de enxofre seja controlado na produção do aço, tem sido aplicada a adição de elementos de liga como o manganês. O manganês reduz consideravelmente a solubilidade do enxofre pela formação de sulfetos de manganês com a redução da temperatura. Estas inclusões controlam o crescimento do grão e facilitam a usinagem, aumentando a vida útil das ferramentas de corte. No entanto, prejudicam a qualidade dos aços e provocam problemas como redução na dutilidade e qualidade superficial de chapas laminadas a quente. Portanto, este trabalho fará uma abordagem sobre as influencias de processos, objetivando estudar sua morfologia, distribuição e tamanho médio, assim como, a precipitação dos sulfetos de manganês sobre óxidos; usando análise de imagens produzidas a partir de amostras retiradas de aço ressulfurado.

Palavras-chave

Inclusões não metálicas; Sulfetos de manganês; Óxidos nucleantes.

Abstract

Sulfur has a direct influence on the mechanical properties of the various grades of steel, especially if it forms FeS, which reduces the resistance to hot rolling due to its low melting point. In order that the sulfur content is controlled in the production of steel, the addition of alloying elements such as manganese has been applied. Manganese considerably reduces the solubility of sulfur by the formation of manganese sulphides with the reduction of temperature. These inclusions control grain growth and facilitate machining, increasing the life of cutting tools. However, they impair the quality of the steels and cause problems such as reduction in the ductility and surface quality of hot-rolled sheets. Therefore, this work will focus on the influences of processes, aiming to study their morphology, distribution and average size, as well as the precipitation of manganese sulphides on oxides; using image analysis produced from samples taken from resulphurised steel.

Keywords

Non-metallic inclusions; Manganese sulfides; Oxide seed.

Referências

1 Yamamoto K, Yamamura H, Suwa Y. Behavior of non-metallic inclusions in steel during hot deformation and the effects of deformed inclusions on local ductility. ISIJ International. 2011;51(12):1987-1994. http://dx.doi.org/10.2355/isijinternational.51.1987.

2 Mapelli C, Nicodemi W, Vedani M, Zoppi A. Control of inclusion in a resulphurised steel. Steel Research. 2000;200(71):161-168. http://dx.doi.org/10.1002/srin.200005707.

3 Oikawa OI, Ohtani H, Ishida K, Nishizawa T. The control of the morphology of MnS inclusions in steel during solidification. ISIJ International. 1995;35(4):402-408. http://dx.doi.org/10.2355/isijinternational.35.402.

4 Sims CE. The nonmetallic constituents of steel. Transactions of the Metallurgical Society of AIME. 1959;215:367-393.

5 Li M, Wang F, Li C, Yang Z, Meng Q, Tao S. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels. International Journal of Minerals Metallurgy and Materials. 2015;22(6):589-596. http://dx.doi.org/10.1007/s12613-015-1111-1.

6 Chen P, Zhu C, Li G, Dong Y, Zhang Z. Effect of sulphur concentration on precipitation behaviors of MnS-containing Inclusions in GCr15 bearing steels after LF refining. ISIJ International. 2017;57(6):1019-1028. http://dx.doi.org/10.2355/isijinternational.ISIJINT-2017-007.

7 Zhang X, Zhang L, Yang W, Dong Y. Characterization of MnS particles in heavy rail steels using different methods. Steel Research International. 2017;88(1):1-16. https://doi.org/10.1002/srin.201600080.

8 Yu H, Kang Y, Zhao Z, Sun H. Morphology and precipitation kinetics of MnS in low-carbon steel during thin slab continuous casting process. Journal of Iron and Steel Research International. 2006;13(5):30-36. http://dx.doi.org/10.1016/S1006-706X(06)60091-5.

9 Imagumbai M. Behaviors of manganese-sulfide in aluminum-killed steel solidified uni-directionally in steady state. Dendrite structure and inclusions. ISIJ International. 1994;34(11):896-905. http://dx.doi.org/10.2355/ isijinternational.34.896.

10 Diederichs R, Bleck W. Modelling of manganese sulphide formation during solidification, Part I: description of MnS formation parameters. Steel Research International. 2006;77(3):202-209. http://dx.doi.org/10.1002/srin.200606375.

11 Chen Y, Yan W, Zhao A. Precipitation of AlN and MnS in low carbon aluminium-killed steel. Journal of Iron and Steel Research International. 2012;19(4):51-56. http://dx.doi.org/10.1016/S1006-706X(12)60087-9.

12 Zhang XF, Lu WJ, Qin RS. Removal of MnS inclusions in molten steel using electropulsing. Scripta Materialia. 2013;69(6):453-456. http://dx.doi.org/10.1016/j.scriptamat.2013.05.033.

13 Wakoh S, Sawai T, Mizoguchi S. Effect of S content on the MnS precipitation in steel with oxide nuclei. ISIJ International. 1996;36(8):1014-1021. http://dx.doi.org/10.2355/isijinternational.36.1014.

14 Ito M, Masumitsu N, Matsubara K. Formation of manganese sulfide in steel. ISIJ International. 1981;21(7):477-484. http://dx.doi.org/10.2355/isijinternational1966.21.477.

15 Luo S, Wang B, Wang Z, Jiang D, Wang W, Zhu M. Morphology of solidification structure and mns inclusion in high carbon steel continuously cast bloom. ISIJ International. 2017;57(11):2000-2009. http://dx.doi.org/10.2355/isijinternational.ISIJINT-2017-294.

16 Shao X, Wang X, Jiang M, Wang W, Huang F. Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels. ISIJ International. 2011;51(12):1995-2001. http://dx.doi.org/10.2355/isijinternational.51.1995.

17 Bielefeldt WV, Vilela ACF. Study of Inclusions in high sulfur, Al‐Killed Ca‐Treated steel via experiments and thermodynamic calculations. Steel Research. 2015;86:375-385.

18 Imagumbai M, Takeda T. Influence of calcium-treatment on sulfide- and oxide-inclusions in continuous-cast slab of clean steel. Dendrite structure and inclusions. ISIJ International. 1994;34(7):574-583. http://dx.doi.org/10.2355/isijinternational.34.574.

19 Ren Y, Zhang L, Li S, Yang W, Wang Y. Formation mechanism of CaO-CaS inclusions in pipeline steels. AISTech Proceedings. 2014:1607-1617.

20 Y. Hu, Chen WQ, Han HB, Bai RJ. Influence of calcium treatment on cleanness and fatigue life of 60Si2MnA spring steel. Ironmaking & Steelmaking: Processes, Products and Applications. 2017;44(1):28-36. http://dx.doi.org/10.1080/03019233.2016.1153026.

5e161c740e88258c0206cbff tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections