Tecnologia em Metalurgia, Materiais e Mineração
https://tecnologiammm.com.br/article/doi/10.4322/2176-1523.20202230
Tecnologia em Metalurgia, Materiais e Mineração
Artigo Original

THE DYNAMIC TRANSFORMATION OF FERRITE ABOVE AE3 AND THE CONSEQUENCES ON HOT ROLLING OF STEELS

Fulvio Siciliano, Samuel Filgueiras Rodrigues, Clodualdo Aranas Jr, John Joseph Jonas

Downloads: 2
Views: 1064

Resumo

The occurrence of dynamic transformation of ferrite (DTF) above Ae3 has recently been proven to be an operative mechanism during hot deformation. This work is a preliminary description of the effects of DTF on the thermo-mechanical control processing (TMCP) in hot rolling of steels and a summary TMCP strategies is presented. The occurrence of dynamic transformation of ferrite in the austenite region is proved by means of synchrotron light diffraction methods. This phase transformation mechanism is taken into consideration and its effects on TMCP are proposed.

Palavras-chave

TMCP; Hot rolling; Microalloyed steels; Dynamic transformation of ferrite.

Referências

1 LeBon AB. Using laboratory simulations to improve rolling schedules and equipment. In: Microalloying’75 Proceedings; 1975; Washington, D.C. New York: Union Carbide Corporation; 1975. p. 90-99.

2 Sellars CM. Modelling-an interdisciplinary activity. In: Yue S, editor. International Symposium on Mathematical Modelling of Hot Rolling of Steel: Proceedings; 1990; Hamilton, Ont. Montréal: Canadian Institute of Mining and Metallurgy; 1990. p. 1-18.

3 McQueen HJ, Jonas JJ. Recovery and recrystallization during high temperature deformation. In: Arsenault RJ, editor. Treatise on materials science and technology. Vol. 6. New York: Academic Press; 1975. p. 393-493.

4 Pickering FB. High-strength-low-alloy steels- a decade of progress. In: Microalloying’75 Proceedings; 1975; Washington, D.C. New York: Union Carbide Corporation; 1975. p. 9-31.

5 Burke JE, Turnbull D. Recrystallization and grain growth. In: Chalmers B, editor. Progress in metal physics. Vol. 3. London: Pergamon Press; 1952. p. 220-292.

6 Siciliano F. Mathematical modeling of the hot strip rolling of niobium microalloyed steels [thesis]. Montreal: McGill University; 1999.

7 Jonas JJ, Sellars CM. Future developments of metals and ceramics. London: Institute of Materials; 1992. 148 p.

8 Sarmento EC, Evans J. Effect of strain accumulation and dynamic recrystallisation on the flow stress of HSLA steels during flat rolling. In: Proceedings of an International Symposium on Processing, Microstructure, and Properties of HSLA Steels; 1992; Pennsylvania. Warrendale: ISS-AIME; 1992. p. 105-112.

9 Siciliano F, Jonas JJ. Mathematical modeling of the hot strip rolling of Nb microalloyed, Cr-Mo and plain C-Mn steels. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science. 2000;31(2):511-530.

10 Siciliano F, Minami K, Maccagno TM, Jonas JJ. Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip rolling of C-Mn steels. ISIJ International. 1996;36(12):1500-1506.

11 Minami K, Siciliano F, Maccagno TM, Jonas JJ. Mathematical modeling of mean flow stress during the hot strip rolling of Nb steels. ISIJ International. 1996;36(12):1507-1515.

12 Kirihata A, Siciliano F, Maccagno TM, Jonas JJ. Mathematical modelling of mean flow stress during the hot strip rolling of multiply-alloyed medium carbon steels. ISIJ International. 1997;38(2):187-195.

13 Kang KB, Cho SH, Siciliano F, Jonas JJ. Mathematical modeling of the hot strip rolling of Nb, Nb-V, Nb-V-Mo and Nb-V-Ti microalloyed steels. In: Proceedings of the 4th International Conference on HSLA Steels; 2000; Xi’an, China. Beijing: The Chinese Society for Metals; 2000.

14 Siciliano F. Mathematical modelling of hot rolling: a practical tool to improve rolling schedules and steel properties. Materials Science Forum. 2013;762:210-217.

15 Pussegoda LN, Hodgson PD, Jonas JJ. Design of dynamic recrystallization controlled rolling schedules for seamless tube rolling. Materials Science and Technology. 1992;8(1):63-71.

16 Pussegoda LN, Yue S, Jonas JJ. Laboratory simulation of seamless tube piercing and rolling using dynamic recrystallization schedules. Metallurgical Transactions. 1990;21A(1):153-164.

17 Samuel FH, Yue S, Jonas JJ, Zbinden BA. Modeling of flow stress and rolling load of a hot strip mill by torsion testing. ISIJ International. 1989;29(10):878-886.

18 Siciliano F. Metallurgical-based mathematical model. Revista ABM: Metalurgia, Materiais e Mineração. 2015;71:438-442.

19 Yada H, Matsumura Y, Senuma T. Proceedings of the International Conference on Martensitic Transformations. Sendai, Japan: Japan Institute of Metals; 1986. p. 515.

20 Yada H, Matsumura Y, Senuma T. A new thermomechanical heat treatment for grain refining in low carbon steels. In: Proceedings of the 1st International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (THERMEC ’88); 1988; Keidanren Kaikan, Tokyo, Japan. Tokyo: ISIJ; 1988. p. 200.

21 Yada H, Li CM, Yamagata H. Dynamic γ - α transformation during hot deformation in Iron-Nickel-Carbon alloys. ISIJ International. 2000;40(2):200-206.

22 Ghosh C, Aranas C Jr, Jonas JJ. Dynamic transformation of deformed austenite at temperatures above the Ae3. Progress in Materials Science. 2016;82:151-233.

23 Rodrigues SF, Aranas C Jr, Sun B, Siciliano F, Yue S, Jonas JJ. Effect of grain size and residual strain on the dynamic transformation of austenite under plate rolling conditions. Steel Research International. 2018;89(6):1700547.

24 Zhao L, Park N, Tian Y, Chen S, Shibata A, Tsuji N. Novel thermomechanical processing methods for achieving ultragrain refinement of low-carbon steel without heavy plastic deformation. Materials Research Letters. 2017;5(1):61-68.

25 Rodrigues SF, Aranas C Jr, Siciliano F, Jonas JJ. Dynamic transformation during the simulation of plate rolling in an X70 steel. Steel Research International. 2017;88(8):1600388.


Submetido em:
01/11/2019

Aceito em:
06/11/2019

5ed64e790e882543663700fa tmm Articles
Links & Downloads

Tecnol. Metal. Mater. Min.

Share this page
Page Sections